Log in

The influence of CaMKII and ERK phosphorylation on BDNF changes observed in mice selectively devoid of CREB in serotonergic or noradrenergic neurons

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The transcription factor CREB and the neurotrophin BDNF are important mood regulators due to their profound role in controlling the neuronal plasticity. Our previously published results from transgenic mice functionally lacking CREB in chosen neural populations have shown that BDNF upregulation evoked by chronic treatment with fluoxetine seems to be dependent on CREB residing exclusively in serotonergic neurons. To further elucidate this observation, we focused on the representative signaling cascades engaged in the regulation of BDNF production.

Methods

The study was carried out on mice lacking CREB in noradrenergic (Creb1DBHCre) or serotonergic (Creb1(TPH2CreERT2) neurons in CREM deficient background. Animals received fluoxetine (10 mg/kg, ip) or desipramine (20 mg/kg, ip) for 21 days. The expression of following proteins and their phosphorylated forms was assessed by Western blot: CREB, BDNF, CaMKIIα, ERK1/2.

Results

We showed that consistent with previously observed BDNF upregulation, chronic treatment with fluoxetine causes an increase in the pool of active CaMKIIα in w/t males, while in Creb1TPH2CreERT2 mutants, this effect ceased along with the observed decrease in ERK1/2 phosphorylation. These effects were region- and sex-specific. We did not observe a similar pattern of changes regarding the levels of BDNF expression and the CaMKIIα, ERK1/2 kinases in Creb1DBHCre mice exposed to desipramine. However, sex-dependent changes in the regulation of CaMKIIα and ERK1/2 activity were also observed.

Conclusions

Our study highlights the pivotal role of CREB in response to antidepressants, emphasizing different sex-dependent vulnerabilities to particular drugs and the important impact of CREM on the effects of CREB deletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BDNF:

brain derived neurotrophic factor

BCA:

bicinchoninic acid

BSA:

bovine serum albumin

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CREB:

cyclic AMP response element binding protein

CREM:

cyclic AMP response element modulator

DBH:

dopamine β-hydroxylase

DMI:

desipramine

ERK:

extracellular signal-regulated kinase

ER:

estrogen receptor

ERT2:

mutant estrogen ligand-binding domain

FLX:

fluoxetine

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

HIP:

hippocampus

KO:

knock out

LC:

locus coeruleus

MAP:

mitogen-activated protein kinase

PFC:

prefrontal cortex

RIPA:

radioimmunopre- cipitation assay buffer

RN:

raphe nuclei

SAL:

saline

SSRI:

selective serotonin reuptake inhibitor

TPH:

tryptophan hydroxylase-2

TrkB:

tropomyosin receptor kinase B

TST:

tail suspension test.

References

  1. Nair A, Vaidya VA. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: molecules that modulate our mood? J Biosci 2006;31:423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ren X, Dwivedi Y, Mondal AC, Pandey GN. Cyclic-AMP response element binding protein (CREB) in the neutrophils of depressed patients. Psychiatry Res 2011;185:108–12.

    Article  CAS  PubMed  Google Scholar 

  3. Bjorkholm C, Monteggia LM. BDNF—a key transducer of antidepressant effects. Neuropharmacology 2016;102:72–9.

    Article  PubMed  CAS  Google Scholar 

  4. Dwivedi Y. Brain-derived neurotrophic factor and suicide pathogenesis. Ann Med 2010;42:87–96.

    Article  PubMed  Google Scholar 

  5. Blendy JA. The role of CREB in depression and antidepressant treatment. Biol Psychiatry 2006;59:1144–50.

    Article  CAS  PubMed  Google Scholar 

  6. Hummler E, Cole TJ, Blendy JA, Ganss R, Aguzzi A, Schmid W, et al. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc Natl Acad Sci U S A 1994;91:5647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rafa-Zablocka K, Kreiner G, Baginska M, Kusmierczyk J, Parlato R, Nalepa I. Transgenic mice lacking CREB and CREM in noradrenergic and serotonergic neurons respond differently to common antidepressants on tail suspension test. Sci Rep 2017;7:13515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rafa-Zablocka K, Kreiner G, Baginska M, Nalepa I. Selective depletion of CREB in serotonergic neurons affects the upregulation of brain-derived neurotrophic factor evoked by chronic fluoxetine treatment. Front Neurosci 2018;12.

    Google Scholar 

  9. Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity- dependent survival of cortical neurons. Science 1994;263:1618–23.

    Article  CAS  PubMed  Google Scholar 

  10. Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci 2010;3:1.

    PubMed  PubMed Central  Google Scholar 

  11. Leal G, Comprido D, Duarte CB. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 2014;76(Pt C):639–56.

    Article  CAS  PubMed  Google Scholar 

  12. **ng J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 1996;273:959–63.

    Article  CAS  PubMed  Google Scholar 

  13. Segal RA. Selectivity in neurotrophin signaling: theme and variations. Ann Rev Neurosci. 2003;26:299–330.

    Article  CAS  PubMed  Google Scholar 

  14. Barnabe-Heider F, Miller FD. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci 2003;23:5149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007;10:1089–93.

    Article  CAS  PubMed  Google Scholar 

  16. Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 2004;20:2580–90.

    Article  PubMed  Google Scholar 

  17. Parlato R, Rieker C, Turiault M, Tronche F, Schutz G. Survival of DA neurons is independent of CREM upregulation in absence of CREB. Genesis 2006;44:454–64.

    Article  CAS  PubMed  Google Scholar 

  18. Peck SC. Analysis of protein phosphorylation: methods and strategies for studying kinases and substrates. Plant J 2006;45:512–22.

    Article  CAS  PubMed  Google Scholar 

  19. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995;15:7539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA. cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci 2002;22:3262–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang HT, Xu JP, Lazarovici P, Quirion RH, Zheng WH. cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front Mol Neurosci 2018;11.

    Google Scholar 

  22. Andero R, Choi DC, Ressler KJ. BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders. Prog Mol Biol Trans Sci. 2014;122:169–92.

    Article  CAS  Google Scholar 

  23. Swulius MT, Waxham MN. Ca(2+)/calmodulin-dependent protein kinases. Cell Mol Life Sci 2008;65:2637–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanson PI, Meyer T, Stryer L, Schulman H. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 1994;12:943–56.

    Article  CAS  PubMed  Google Scholar 

  25. Barbiero VS, Giambelli R, Musazzi L, Tiraboschi E, Tardito D, Perez J, et al. Chronic antidepressants induce redistribution and differential activation of alphaCaM kinase II between presynaptic compartments. Neuropsychopharmacology 2007;32:2511–9.

    Article  CAS  PubMed  Google Scholar 

  26. Celano E, Tiraboschi E, Consogno E, D’Urso G, Mbakop MP, Gennarelli M, et al. Selective regulation of presynaptic calcium/calmodulin-dependent protein kinase II by psychotropic drugs. Biol Psychiatry 2003;53:442–9.

    Article  CAS  PubMed  Google Scholar 

  27. Martinez-Turrillas R, Del Rio J, Frechilla D. Neuronal proteins involved in synaptic targeting of AMPA receptors in rat hippocampus by antidepressant drugs. Biochem Biophys Res Commun 2007;353:750–5.

    Article  CAS  PubMed  Google Scholar 

  28. Yan X, Liu J, Ye Z, Huang J, He F, **ao W, et al. CaMKII-mediated CREB phosphorylation is involved in Ca2+-induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation. PLoS One 2016;11: e0162784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 2012;35:47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fumagalli F, Molteni R, Calabrese F, Frasca A, Racagni G, Riva MA. Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain. J Neurochem 2005;93:1551–60.

    Article  CAS  PubMed  Google Scholar 

  31. Di Benedetto B, Radecke J, Schmidt MV, Rupprecht R. Acute antidepressant treatment differently modulates ERK/MAPK activation in neurons and astrocytes of the adult mouse prefrontal cortex. Neuroscience 2013;232:161–8.

    Article  PubMed  CAS  Google Scholar 

  32. Alboni S, Benatti C, Capone G, Corsini D, Caggia F, Tascedda F, et al. Time-dependent effects of escitalopram on brain derived neurotrophic factor (BDNF) and neuroplasticity related targets in the central nervous system of rats. Eur J Pharmacol 2010;643:180–7.

    Article  CAS  PubMed  Google Scholar 

  33. Qi X, Lin W, Li J, Li H, Wang W, Wang D, et al. Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress. Neurobiol Dis 2008;31:278–85.

    Article  CAS  PubMed  Google Scholar 

  34. Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 2007;61:661–70.

    Article  CAS  PubMed  Google Scholar 

  35. Borrow AP, Cameron NM. Estrogenic mediation of serotonergic and neurotrophic systems: implications for female mood disorders. Prog Neuropsychopharmacol Biol Psych 2014;54:13–25.

    Article  CAS  Google Scholar 

  36. Bigos KL, Pollock BG, Stankevich BA, Bies RR. Sex differences in the pharmacokinetics and pharmacodynamics of antidepressants: an updated review. J Gend Specif Med 2009;6:522–43.

    Article  Google Scholar 

  37. Thompson DS, Kirshner MA, Klug TL, Kastango KB, Pollock BG. A preliminary study of the effect of fluoxetine treatment on the 2: 16-alpha-hydroxyestrone ratio in young women. Ther Drug Monit 2003;25:125–8.

    Article  CAS  PubMed  Google Scholar 

  38. Donner N, Handa RJ. Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei. Neuroscience 2009;163:705–18.

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki H, Barros RP, Sugiyama N, Krishnan V, Yaden BC, Kim HJ, et al. Involvement of estrogen receptor beta in maintenance of serotonergic neurons of the dorsal raphe. Mol Psych 2013;18:674–80.

    Article  CAS  Google Scholar 

  40. Amin Z, Canli T, Epperson CN. Effect of estrogen-serotonin interactions on mood and cognition. Beh Cog Neurosci Rev 2005;4:43–58.

    Article  Google Scholar 

  41. Ye R, Wang QA, Tao C, Vishvanath L, Shao M, McDonald JG, et al. Impact of tamoxifen on adipocyte lineage tracing: inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Mol Metab 2015;4:771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobsen JP, Mork A. The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 2004;1024:183–92.

    Article  CAS  PubMed  Google Scholar 

  43. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005;29:571–625.

    Article  CAS  PubMed  Google Scholar 

  44. Vinet J, Carra S, Blom JMC, Brunello N, Barden N, Tascedda F. Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKK alpha and CaMKK beta mRNA levels in the hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid receptor. Neuropharmacology 2004;47:1062–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kozisek ME, Middlemas D, Bylund DB. The differential regulation of BDNF and TrkB levels in juvenile rats after four days of escitalopram and desipramine treatment. Neuropharmacology 2008;54:251–7.

    Article  CAS  PubMed  Google Scholar 

  46. Balu DT, Hoshaw BA, Malberg JE, Rosenzweig-Lipson S, Schechter LE, Lucki I. Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res 2008;1211:37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci U S A 2004;101:10827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Castren E, Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 2017;97:119–26.

    Article  CAS  PubMed  Google Scholar 

  49. Dey A, Giblin PAH. Insights into macrophage heterogeneity and cytokineinduced neuroinflammation in major depressive disorder. Pharmaceuticals 2018;11.

    Google Scholar 

  50. Ortega-Martinez S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci 2015;8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Kreiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafa-Zabłocka, K., Kreiner, G., Bagińska, M. et al. The influence of CaMKII and ERK phosphorylation on BDNF changes observed in mice selectively devoid of CREB in serotonergic or noradrenergic neurons. Pharmacol. Rep 71, 753–761 (2019). https://doi.org/10.1016/j.pharep.2019.04.008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2019.04.008

Keywords

Navigation