Log in

PPAR-γ agonist pioglitazone reduces microglial proliferation and NF-κB activation in the substantia nigra in the 6-hydroxydopamine model of Parkinson’s disease

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Peroxisome proliferator-activated receptor γ (PPAR-γ) agonists have received much attention in research because of their neuroprotective and anti-inflammatory effects that reduce cell death and halt the progression of neurodegeneration. Thus, this study observed the pioglitazone effects on the main inflammatory markers after 6-hydroxydopamine (6-OHDA) lesion.

Methods

The effects of a 5-day administration of the PPAR-γ agonist pioglitazone (30 mg/kg) in male Wistar rats that received bilateral intranigral infusions of 6-OHDA. After surgery, the rats were evaluated in the open-field test on days 1,7,14, and 21. Immediately after the behavioral tests on day 21, the rats were euthanized, and the substantia nigra was removed to analyze the expression of nuclear factor κB (NF-κB) and IκB by western blot. To immunohistochemical, animals were intracardially perfused, with brain removal that was frozen and sectioned, being selected slices of the SNc region to detect tyrosine hydroxylase (TH) immunoreactivity, microglia activation (Iba-1) and NF-κB translocation in the nucleus.

Results

Pioglitazone protected rats against hypolocomotion and 6-OHDA-induced dopaminergic neurodegeneration on day 7. Decreases in the microglial activation and the NF-κB expression were observed, and the p65 activation was inhibited.

Conclusions

These results suggest that pioglitazone may be a potential adjuvant for the treatment of Parkinson`s disease because of its effects on pathological markers of the progression of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schapira AH. Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol Sci 2009;30:41–7.

    Article  CAS  PubMed  Google Scholar 

  2. Connolly BS, Lang AE. Pharmacological treatment of Parkinson’s disease? A review. JAMA 2014;311:1670–83.

    Article  CAS  PubMed  Google Scholar 

  3. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003;39:889–09.

    Article  CAS  PubMed  Google Scholar 

  4. Kalia LV, Lang AE, Shulman G. Parkinson’s disease. Lancet 2015;386:896–12.

    Article  CAS  PubMed  Google Scholar 

  5. Salat D, Noyce AJ, Schrag A, Tolosa E. Challenges of modifying disease progression in prediagnostic Parkinson’s disease. Lancet Neurol 2016;15:637–48.

    Article  PubMed  Google Scholar 

  6. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 2002;81:1285–97.

    Article  CAS  PubMed  Google Scholar 

  7. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 2012;18(Suppl. 1):S210–2.

    Article  PubMed  Google Scholar 

  8. Hong H, Kim BS, Im HI. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int Neurourol J 2016;20(Suppl. 1):S2–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu Y, Nakahara T, Miyakoshi J, Hu DL, Nakane A, Abe Y. Nuclear accumulation and activation of nuclear factor κB after split-dose irradiation in LS174T cells. J Radiat Res 2007;48:13–20.

    Article  CAS  PubMed  Google Scholar 

  10. Hirsch EC, Jenner P, Przedborski S. Pathogenesis of Parkinson’s disease. Mov Disord 2013;28:24–30.

    Article  CAS  PubMed  Google Scholar 

  11. Blandini F. Neural and immune mechanisms in the pathogenesis of Parkinson’s disease. J Neuroimmune Pharmacol 2013;8:189–201.

    Article  PubMed  Google Scholar 

  12. Zhang J, Zhang Y, **ao F, Liu Y, Wang J, Gao H, et al. The peroxisome proliferator-activated receptor γ agonist pioglitazone prevents NF-κB activation in cisplatin nephrotoxicity through the reduction of p65 acetylation via the AMPK-SIRT1/p300 pathway. Biochem Pharmacol 2016;101:100–11.

    Article  CAS  PubMed  Google Scholar 

  13. De Filippis B, Linciano P, Ammazzalorso A, Di Giovanni C, Fantacuzzi M, Giampietro L, et al. Structural development studies of PPARs ligands based on tyrosine scaffold. Eur J Med Chem 2015;89:817–25.

    Article  CAS  PubMed  Google Scholar 

  14. Liu M, Bachstetter AD, Cass WA, Lifshitz J, Bing G. Pioglitazone attenuates neuroinflammation and promotes dopaminergic neuronal survival in the nigrostriatal system of rats after diffuse brain injury. J Neurotrauma 2017;34(2):414–22.

    Article  PubMed  Google Scholar 

  15. O’Sullivan SE. An update on PPAR activation by cannabinoids. Br J Pharmacol 2016;173:1899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB. Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with IκBα induction and block of NF-κB and iNOS activation. J Neurochem 2004;88(2):494–501.

    Article  CAS  PubMed  Google Scholar 

  17. Sadaghiani MS, Javadi-Paydar M, Gharedaghi MH, Fard YY, Dehpour AR. Antidepressant-like effect of pioglitazone in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway. Behav Brain Res 2011;224:336–43.

    Article  CAS  PubMed  Google Scholar 

  18. Barbiero JK, Santiago RM, Lima MMS, Ariza D, Morais LH, Andreatini R, et al. Acute but not chronic administration of pioglitazone promoted behavioral and neurochemical protective effects in the MPTP model of Parkinson’s disease. Behav Brain Res 2011;216:186–92.

    Article  CAS  PubMed  Google Scholar 

  19. Paxinos G, Watson C. The rat brain in stereotaxic coordinates — the new coronal set. 5th ed San Diego: Academic Press; 2005.

    Google Scholar 

  20. Gomes FV, Llorente R, Del Bel EA, Viveros MP, López-Gallardo M, Guimarães FS. Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol. Schizophr Res 2015;164:155–63.

    Article  PubMed  Google Scholar 

  21. Laloux C, Petrault M, Lecointe C, Devos D, Bordet R. Differential susceptibility to the PPAR-γ agonist pioglitazone in 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine rodent models of Parkinson’s disease. Pharmacol Res 2012;65:514–22.

    Article  CAS  PubMed  Google Scholar 

  22. Sadeghian M, Marinova-Mutafchieva L, Broom L, Davis JB, Virley D, Medhurst AD, et al. Full and partial peroxisome proliferation-activated receptor-γagonists, but not d agonist, rescue of dopaminergic neurons in the 6-OHDA parkinsonian model is associated with inhibition of microglial activation and MMP expression. J Neuroimmunol 2012;246:69–77.

    Article  CAS  PubMed  Google Scholar 

  23. Lima MMS, Reksidler AB, Zanata SM, Machado HB, Tufik S, MABF Vital. Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats. Brain Res 2006;1101:117–25.

    Article  CAS  Google Scholar 

  24. Gradowski RW, Santiago RM, Zaminelli T, Bassani TB, Barbiero JK, Boschen SL, et al. Antidepressant-like effect of curcumin in 6-hydroxydopamine model of Parkinson’s disease. Curr Trends Neurol 2013;7:69–80.

    Google Scholar 

  25. Santiago RM, Barbieiro J, Lima MMS, Dombrowski PA, Andreatini R, MABF Vital. Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:1104–14.

    Article  CAS  PubMed  Google Scholar 

  26. Kuter K, Kolasiewicz W, Gołembiowska K, Dziubina A, Schulze G, Berghauzen K, et al. Partial lesion of the dopaminergic innervation of the ventral striatum induces “depressive-like” behavior of rats. Pharmacol Rep 2011;63:1383–92.

    Article  CAS  PubMed  Google Scholar 

  27. Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012;2012(84618).

  28. Barbiero JK, Santiago RM, Persike DS, da Silva Fernandes MJ, Tonin FS, da Cunha C, et al. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav Brain Res 2014;274:390–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, et al. Nuclear translocation of NF-κB is increased in dopaminergic neurons of patients with Parkinson’s disease. Proc Natl Acad Sci USA 1997;94:7531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Machado A, Herrera AJ, Venero JL, Santiago M, De Pablos RM, Villarán RF, et al. Peripheral inflammation increases the damage in animal modelsofnigrostriatal dopaminergic neurodegeneration: possible implication in Parkinson’s disease incidence. Parkinsons Dis 2011;2011:393769.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 2001;909:187–93.

    Article  CAS  PubMed  Google Scholar 

  32. Barcia C, Sánchez-Bahillo A, Fernández-Villalba E, Bautista V, Poza Y, Poza M, et al. Evidence of active microglia in substantia nigra pars compacta of parkinsonism monkeys 1 year after MPTP exposure. Glia 2014;46:402–9.

    Article  Google Scholar 

  33. Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC. Protective action of the peroxisome proliferator-activated receptor-γ agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 2002;82:615–24.

    Article  CAS  PubMed  Google Scholar 

  34. Carta AR, Pisanu A. Modulating microglia activity with PPAR-γ agonists: α promising therapy for Parkinson’s disease? Neurotox Res 2013;23:112–23.

    Article  CAS  PubMed  Google Scholar 

  35. Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 2012;36:764–85.

    Article  CAS  PubMed  Google Scholar 

  36. Levites Y, Youdim MBH, Maor G, Mandel S. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-κB (NF-κB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 2002;63:21–9.

    Article  CAS  PubMed  Google Scholar 

  37. Tarabin V, Schwaninger M. The role of NF-κB in 6-hydroxydopamine- and TNFα-induced apoptosis of PC12 cells. Naunyn Shmiedebergs Arch Pharmacol 2004;369:563–9.

    Article  CAS  Google Scholar 

  38. Liang ZQ, Li YL, Zhao XL, Han R, Wang X, Wang Y, et al. NF-κB contributes to 6-hydroxydopamine-induced apoptosis of nigral dopaminergic neurons through p53. Brain Res 2007;1145:190–03.

    Article  CAS  PubMed  Google Scholar 

  39. Cao JP, Wang HJ, Yu JK, Liu HM, Gao DS. The involvement of NF-κB p65/p52 in the effects of GDNF on DA neurons in early PD rats. Brain Res Bull 2008;76:505–11.

    Article  CAS  PubMed  Google Scholar 

  40. Glezer I, Marcourakis T, Christina M, Avellar W, Gorenstein C, Scavone C. The role of the transcription factor NF-κB in the molecular mechanisms of action of psychoactive drugs. Rev Bras Psiquiatr 2000;22:26–30.

    Article  Google Scholar 

  41. Gilmore T. Introduction to NF-κB: players, pathways, perspectives. Oncogene 2006;25:6680–4.

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Wu G, Wu M, Chen W, Liu X. In vitro study of inhibitory millimeter wave treatment effects on the TNF-α-induced NF-κB signal transduction pathway. Int J Mol Med 2011;27:71–8.

    PubMed  Google Scholar 

  43. Troib A, Azab AN. Effects of psychotropic drugs on nuclear factor kappa B. Eur Rev Med Pharmacol Sci 2015;19:1198–08.

    CAS  PubMed  Google Scholar 

  44. Yin Y, Allen PD, Jia L, Kelsey SM, Newland AC. 8-Cl-adenosine mediated cytotoxicity and sensitization of T-lymphoblastic leukemia cells to TNFα-induced apoptosis is via inactivation of NF-κB. Leuk Res 2001;25:423–31.

    Article  CAS  PubMed  Google Scholar 

  45. Sauer S. Ligands for the nuclear peroxisome proliferator-activated receptor gamma. Trends Pharmacol Sci 2015;36:688–76541.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Aparecida Barbato Frazão Vital.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, M.M.F., Bassani, T.B., Cóppola-Segovia, V. et al. PPAR-γ agonist pioglitazone reduces microglial proliferation and NF-κB activation in the substantia nigra in the 6-hydroxydopamine model of Parkinson’s disease. Pharmacol. Rep 71, 556–564 (2019). https://doi.org/10.1016/j.pharep.2018.11.005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.11.005

Keywords

Navigation