Log in

The effect of paroxetine, venlafaxine and bupropion administration alone and combined on spatial and aversive memory performance in rats

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The use of antidepressants in combination is common practice following non-response to single antidepressant agents. Nevertheless, the scientific literature lacks preclinical studies regarding the combined administration of antidepressants across multiple behavioral measures including, but not limited to, cognition. Hence, we aimed to determine the effects of paroxetine (PAR), venlafaxine (VEN) and bupropion (BUP) alone or combined (PAR + BUP or VEN + BUP) on spatial and affective memory tasks to advance the knowledge about the combined use of antidepressants in cognition.

Methods

Adult rats received daily injections (15 days) of PAR (20 mg/kg, ip), VEN (20 mg/kg, ip), BUP (20 mg/kg, ip) alone or combined and were submitted to behavioral measures of spatial memory (radial-arm maze — RAM), aversive memory (passive avoidance — PA), open field (OF) and forced swimming (FST) tests.

Results

In the RAM, VEN or VEN + BUP impaired learning, while short-term memory (STM) was impaired by PAR, BUP and their combination. VEN + BUP improved STM as compared to BUP. PAR impaired long-term memory (LTM). VEN or BUP alone impaired STM and long-term fear memory, whilst PAR + BUP or VEN + BUP did not induce significant alterations.

Conclusions

The effects of VEN, PAR or BUP alone and in combination on measures of memory are variable and vary as a function of the pharmacodynamics profile of each drug as well as the specific memory paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pringle A., Browning M, Cowen PJ, Harmer CJ. A cognitive neuropsychological model of antidepressant drug action. Prog Neuro-Psychopharmacol Biol Psychiatry 2011;35:1586–92, doi:https://doi.org/10.1016/j.pnpbp.2010.07.022.

    CAS  Google Scholar 

  2. Ellis AJ, Wells TT, Vanderlind WM, Beevers CG. The role of controlled attention on recall in major depression. Cognit Emot 2014;28:520–9, doi:https://doi.org/10.1080/02699931.2013.832153.

    Google Scholar 

  3. Harvey PO, Le Bastard G, Pochon JB, Levy R, Allilaire JF, Dubois B, et al. Executive functions and updating of the contents of working memory in unipolar depression. J Psychiatr Res 2004;38:567–76, doi:https://doi.org/10.1016/j.jpsychires.2004.03.003.

    CAS  PubMed  Google Scholar 

  4. Gotlib IH, Joormann J. Cognition and depression: current status and future directions. Annu Rev Clin Psychol 2010;6:285–312, doi:https://doi.org/10.1146/annurev.clinpsy.121208.131305.

    PubMed  PubMed Central  Google Scholar 

  5. McIntyre RS, Cha DS, Soczynska JK, Woldeyohannes HO, Gallaugher LA, Kudlow P, et al. Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depress Anxiety 2013;30:515–27, doi:https://doi.org/10.1002/da.22063.

    PubMed  Google Scholar 

  6. Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D, et al. Medication augmentation after the failure of SSRIs for depression. N Engl J Med 2006;354:1243–52, doi:https://doi.org/10.1056/NEJMoa052964.

    CAS  PubMed  Google Scholar 

  7. Quesseveur G, Gardier AM, Guiard BP. The monoaminergic tripartite synapse: a putative target for currently available antidepressant drugs. Curr Drug Targets 2013;14:1277–94, doi:https://doi.org/10.2174/13894501113149990209.

    CAS  PubMed  Google Scholar 

  8. Millan MJ. The role of monoamines in the actions of established and ‘novel’ antidepressant agents: a critical review. Eur J Pharmacol 2004;500:371–84, doi:https://doi.org/10.1016/j.ejphar.2004.07.038.

    CAS  PubMed  Google Scholar 

  9. Kemenes I, O’Shea M, Benjamin PR. Different circuit and monoamine mechanisms consolidate long-term memory in aversive and reward classical conditioning. Eur J Neurosci 2011;33:143–52, doi:https://doi.org/10.1111/j.1460-9568.2010.07479.x.

    PubMed  Google Scholar 

  10. Baune BT, Renger L. Pharmacological and non-pharmacological interventions to improve cognitive dysfunction and functional ability in clinical depression—a systematic review. Psychiatry Res 2014;219:25–50, doi:https://doi.org/10.1016/j.psychres.2014.05.013.

    PubMed  Google Scholar 

  11. Nagane A, Baba H, Nakano Y, Maeshima H, Hukatsu M, Ozawa K, et al. Comparative study of cognitive impairment between medicated and medication-free patients with remitted major depression: class-specific influence by tricyclic antidepressants and newer antidepressants. Psychiatry Res 2014;218:101–5, doi:https://doi.org/10.1016/j.psychres.2014.04.013.

    PubMed  Google Scholar 

  12. Sass A, Wörtwein G. The effect of subchronic fluoxetine treatment on learning and memory in adolescent rats. Behav Brain Res 2012;228:169–75, doi:https://doi.org/10.1016/j.bbr.2011.12.006.

    CAS  PubMed  Google Scholar 

  13. Ferguson JM, Wesnes KA, Schwartz GE. Reboxetine versus paroxetine versus placebo: effects on cognitive functioning in depressed patients. Int Clin Psychopharmacol 2003;18:9–14, doi:https://doi.org/10.1097/01.yic.0000048749.53980.bf.

    PubMed  Google Scholar 

  14. Rosenblat JD, Kakar R, McIntyre RS. The cognitive effects of antidepressants in major depressive disorder: a systematic review and meta-analysis of randomized clinical trials. Int J Neuropsychopharmacol 2015;19:1–13, doi:https://doi.org/10.1093/ijnp/pyv082.

    Google Scholar 

  15. Nebes RD, Pollock BG, Houck PR, Butters MA, Mulsant BH, Zmuda MD, et al. Persistence of cognitive impairment in geriatric patients following antidepressant treatment: a randomized, double-blind clinical trial with nortriptyline and paroxetine. J Psychiatr Res 2003;37:99–108, doi:https://doi.org/10.1016/S0022-3956(02)00085-7.

    PubMed  Google Scholar 

  16. Nevels RM, Gontkovsky ST, Williams BE. Paroxetine-the antidepressant from hell? Probably not, but caution required. Psychopharmacol Bull 2016;46:77–104.

    PubMed  PubMed Central  Google Scholar 

  17. Nowakowska E, Kus K, Bobkiewicz-Kozłowska T, Hertmanowska H. Role of neuropeptides in antidepressant and memory improving effects of venlafaxine. Pol J Pharmacol 2002;54:605–13.

    CAS  PubMed  Google Scholar 

  18. Yang C-H, Shi H-S, Zhu W-L, Wu P, Sun L-L, Si J-J, et al. Venlafaxine facilitates between-session extinction and prevents reinstatement of auditory-cue conditioned fear. Behav Brain Res 2012;230:268–73, doi:https://doi.org/10.1016/j.bbr.2012.02.023.

    CAS  PubMed  Google Scholar 

  19. Evins AE, Deckersbach T, Cather C, Freudenreich O, Culhane MA, Henderson DC, et al. independent effects of tobacco abstinence and bupropion on cognitive function in schizophrenia. J Clin Psychiatry 2005;66:1184–90.

    PubMed  Google Scholar 

  20. Kennedy SH, McCann SM, Masellis M, McIntyre RS, Raskin J, McKay G, et al. Combining bupropion SR with venlafaxine, paroxetine, or fluoxetine: a preliminary report on pharmacokinetic, therapeutic, and sexual dysfunction effects. J Clin Psychiatry 2002;63:181–6, doi:https://doi.org/10.4088/JCP.v63n0302.

    CAS  PubMed  Google Scholar 

  21. Solé B, Bonnin CM, Torrent C, Balanzá-Martínez V, Tabarés-Seisdedos R, Popovic D, et al. Neurocognitive impairment and psychosocial functioning in bipolar II disorder. Acta Psychiatr Scand 2012;125:309–17, doi:https://doi.org/10.1111/j.1600-0447.2011.01759.x.

    PubMed  Google Scholar 

  22. Gildengers AG, Butters MA, Chisholm D, Anderson SJ, Begley A, Holm M, et al. Cognition in older adults with bipolar disorder versus major depressive disorder. Bipolar Disord 2012;14:198–205, doi:https://doi.org/10.1111/j.1399-5618.2012.00995.x.

    PubMed  PubMed Central  Google Scholar 

  23. NIH NRC (US) C for the U of the G for the C and U of L. Guide for the care and use of laboratory animals. Washington, D.C: National Academies Press; 2011, doi:https://doi.org/10.17226/12910.

    Google Scholar 

  24. Katz MM, Tekell JL, Bowden CL, Brannan S, Houston JP, Berman N, et al. Onset and early behavioral effects of pharmacologically different antidepressants and placebo in depression. Neuropsychopharmacology 2004;29:566–79, doi:https://doi.org/10.1038/sj.npp.1300341.

    CAS  PubMed  Google Scholar 

  25. Kudlow PA, McIntyre RS, Lam RW. Early switching strategies in antidepressant non-responders: current evidence and future research directions. CNS Drugs 2014;28:601–9, doi:https://doi.org/10.1007/s40263-014-0171-5.

    CAS  PubMed  Google Scholar 

  26. Takamatsu Y, Yamamoto H, Hagino Y, Markou A, Ikeda K. The selective serotonin reuptake inhibitor paroxetine, but not fluvoxamine, decreases methamphetamine conditioned place preference in mice. Curr Neuropharmacol 2011;9:68–72, doi:https://doi.org/10.2174/157015911795017236.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Abdel-Wahab BA, Salama RH. Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol Biochem Behav 2011;100:59–65, doi:https://doi.org/10.1016/j.pbb.2011.07.015.

    CAS  PubMed  Google Scholar 

  28. Chellian R, Pandy V, Mohamed Z. Biphasic effects of α-asarone on immobility in the tail suspension test: evidence for the involvement of the noradrenergic and serotonergic systems in its antidepressant-like activity. Front Pharmacol 2016;7:72, doi:https://doi.org/10.3389/fphar.2016.00072.

    PubMed  PubMed Central  Google Scholar 

  29. Archer J. Tests for emotionality in rats and mice: a review. Anim Behav 1973;21:205–35.

    CAS  PubMed  Google Scholar 

  30. Porsolt RD. Animal model of depression. Biomedicine 1979;30:139–40.

    CAS  PubMed  Google Scholar 

  31. Slattery DA, Cryan JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 2012;7:1009.

    CAS  PubMed  Google Scholar 

  32. Olton DS. The radial arm maze as a tool in behavioral pharmacology. Physiol Behav 1987;40:793–7.

    CAS  PubMed  Google Scholar 

  33. Dubreuil D, Tixier C, Dutrieux G, Edeline J-M. Does the radial arm maze necessarily test spatial memory? Neurobiol Learn Mem 2003;79:109–17.

    PubMed  Google Scholar 

  34. Nakamura A, Suzuki Y, Umegaki H, Ikari H, Tajima T, Endo H, et al. Dietary restriction of choline reduces hippocampal acetylcholine release in rats: in vivo microdialysis study. Brain Res Bull 2001;56:593–7.

    CAS  PubMed  Google Scholar 

  35. Fujishiro J, Imanishi T, Onozawa K, Tsushima M. Comparison of the anticholinergic effects of the serotonergic antidepressants, paroxetine, fluvoxamine and clomipramine. Eur J Pharmacol 2002;454:183–8.

    CAS  PubMed  Google Scholar 

  36. Arias HR. Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Int J Biochem Cell Biol 2009;41:2098–108, doi:https://doi.org/10.1016/j.biocel.2009.05.015.

    CAS  PubMed  Google Scholar 

  37. Rahman S, Engleman EA, Bell RL. Nicotinic receptor modulation to treat alcohol and drug dependence. Front Neurosci 2015;9:426, doi:https://doi.org/10.3389/fnins.2014.00426.

    Google Scholar 

  38. Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR J 2014;55:310–32, doi:https://doi.org/10.1093/ilar/ilu013.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dow-Edwards DL, Weedon JC, Hellmann E. Methylphenidate improves performance on the radial arm maze in periadolescent rats. Neurotoxicol Teratol 2008;30:419–27, doi:https://doi.org/10.1016/j.ntt.2008.04.001.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Görisch J, Schwarting RKW. Wistar rats with high versus low rearing activity differ in radial maze performance. Neurobiol Learn Mem 2006;86:175–87, doi:https://doi.org/10.1016/j.nlm.2006.02.004.

    PubMed  Google Scholar 

  41. Dubreuil D. Does the radial arm maze necessarily test spatial memory? Neurobiol Learn Mem 2003;79:109–17.

    PubMed  Google Scholar 

  42. Shukitt-Hale B, McEwen JJ, Szprengiel A, Joseph JA. Effect of age on the radial arm water maze—a test of spatial learning and memory. Neurobiol Aging 2004;25:223–9.

    PubMed  Google Scholar 

  43. Gohier B, Ferracci L, Surguladze SA, Lawrence E, El Hage W, Kefi MZ, et al. Cognitive inhibition and working memory in unipolar depression. J Affect Disord 2009;116:100–5, doi:https://doi.org/10.1016/j.jad.2008.10.028.

    PubMed  Google Scholar 

  44. Jayaweera HK, Hickie IB, Duffy SL, Mowszowski L, Norrie L, Lagopoulos J, et al. Episodic memory in depression: the unique contribution of the anterior caudate and hippocampus. Psychol Med 2016;46:2189–99, doi:https://doi.org/10.1017/S0033291716000787.

    CAS  PubMed  Google Scholar 

  45. Söderlund H, Moscovitch M, Kumar N, Daskalakis ZJ, Flint A, Herrmann N, et al. Autobiographical episodic memory in major depressive disorder. J Abnorm Psychol 2014;123:51–60, doi:https://doi.org/10.1037/a0035610.

    PubMed  Google Scholar 

  46. Biringer E, Rongve A, Lund A. A review of modern antidepressants’ effects on neurocognitive function. 2009.

    CAS  Google Scholar 

  47. Nowakowska E, Kus K. Antidepressant and memory affecting influence of estrogen and venlafaxine in ovariectomized rats. Arzneimittelforschung 2005;55:153–9, doi:https://doi.org/10.1055/s-0031-1296837.

    CAS  PubMed  Google Scholar 

  48. Dai M, Li D, Han Y. Effect of venlafaxine on cognitive function and hippocampal brain-derived neurotrophic factor expression in rats with post-stroke depression. Zhejiang Da Xue Xue Bao Yi Xue Ban 2011;40:527–34.

    CAS  PubMed  Google Scholar 

  49. Cooke JD, Grover LM, Spangler PR. Venlafaxine treatment stimulates expression of brain-derived neurotrophic factor protein in frontal cortex and inhibits long-term potentiation in hippocampus. Neuroscience 2009;162:1411–9, doi:https://doi.org/10.1016/j.neuroscience.2009.05.037.

    CAS  PubMed  Google Scholar 

  50. Cooke JD, Cavender HM, Lima HK, Grover LM. Antidepressants that inhibit both serotonin and norepinephrine reuptake impair long-term potentiation in hippocampus. Psychopharmacology (Berl) 2014;231:4429–41, doi:https://doi.org/10.1007/s00213-014-3587-1.

    CAS  Google Scholar 

  51. Bartsch T, Schonfeld R, Muller FJ, Alfke K, Leplow B, Aldenhoff J, et al. Focal lesions of human hippocampal CA1 neurons in transient global amnesia impair place memory. Science (80-) 2010;328:1412–5, doi:https://doi.org/10.1126/science.1188160.

    CAS  Google Scholar 

  52. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 1996;87:1327–38, doi:https://doi.org/10.1016/S0092-8674(00)81827-9.

    CAS  PubMed  Google Scholar 

  53. Naudon L, Hotte M, Jay TM. Effects of acute and chronic antidepressant treatments on memory performance: a comparison between paroxetine and imipramine. Psychopharmacology (Berl) 2007;191:353–64, doi:https://doi.org/10.1007/s00213-006-0660-4.

    CAS  Google Scholar 

  54. Carvalho AF, Köhler CA, Cruz EP, Stürmer PL, Reichman BP, Barea BM, et al. Acute treatment with the antidepressants bupropion and sertraline do not influence memory retrieval in man. Eur Arch Psychiatry Clin Neurosci 2006;256:320–5, doi:https://doi.org/10.1007/s00406-006-0640-z.

    PubMed  Google Scholar 

  55. Ashare RL, Falcone M, Lerman C. Cognitive function during nicotine withdrawal: implications for nicotine dependence treatment. Neuropharmacology 2014;76(Pt B):581–91, doi:https://doi.org/10.1016/j.neuropharm.2013.04.034.

    CAS  PubMed  Google Scholar 

  56. Kruk-Słomka M, Michalak A, Budzyńska B, Biała G. A comparison of mecamylamine and bupropion effects on memory-related responses induced by nicotine and scopolamine in the novel object recognition test in mice. Pharmacol Rep 2014;66:638–46, doi:https://doi.org/10.1016/j.pharep.2014.02.002.

    PubMed  Google Scholar 

  57. Gomez C, Carrasco C, Redolat R. Adolescent and adult mice display differential sensitivity to the effects of bupropion on the acquisition of a water maze task. Pharmacol Rep 2017;69:162–7, doi:https://doi.org/10.1016/j.pharep.2016.10.008.

    CAS  PubMed  Google Scholar 

  58. Rottenberg J, Joormann J, Brozovich F, Gotlib IH. Emotional intensity of idiographic sad memories in depression predicts symptom levels 1 year later. Emotion 2005;5:238–42, doi:https://doi.org/10.1037/1528-3542.5.2.238.

    PubMed  Google Scholar 

  59. Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 2000;406:722–6, doi:https://doi.org/10.1038/35021052.

    CAS  PubMed  Google Scholar 

  60. Graham BM, Milad MR. The study of fear extinction: implications for anxiety disorders. Am J Psychiatry 2011;168:1255–65, doi:https://doi.org/10.1176/appi.ajp.2011.11040557.

    PubMed  PubMed Central  Google Scholar 

  61. Thase ME. Treatment of anxiety disorders with venlafaxine XR. Expert Rev Neurother 2006;6:269–82, doi:https://doi.org/10.1586/14737175.6.3.269.

    CAS  PubMed  Google Scholar 

  62. Davidson J, Rothbaum BO, Tucker P, Asnis G, Benattia I, Musgnung JJ. Venlafaxine extended release in posttraumatic stress disorder. J Clin Psychopharmacol 2006;26:259–67, doi:https://doi.org/10.1097/01.jcp.0000222514.71390.c1.

    CAS  PubMed  Google Scholar 

  63. Pae C-U, Lim H-K, Ajwani N, Lee C, Patkar AA. Extended-release formulation of venlafaxine in the treatment of post-traumatic stress disorder. Expert Rev Neurother 2007;7:603–15, doi:https://doi.org/10.1586/14737175.7.6.603.

    CAS  PubMed  Google Scholar 

  64. Barros DM, Izquierdo LA, Medina JH, Izquierdo I. Bupropion and sertraline enhance retrieval of recent and remote long-term memory in rats. Behav Pharmacol 2002;13:215–20.

    CAS  PubMed  Google Scholar 

  65. Nakagawa T, Ukai K, Ohyama T, Gomita Y, Okamura H. Effects of dopaminergic agents on reversal of reserpine-induced impairment in conditioned avoidance response in rats. Pharmacol Biochem Behav 1997;58:829–36.

    CAS  PubMed  Google Scholar 

  66. Gomez MC, Redolat R, Carrasco MC. Differential effects of bupropion on acquisition and performance of an active avoidance task in male mice. Behav Process 2016;124:32–7, doi:https://doi.org/10.1016/j.beproc.2015.12.003.

    CAS  Google Scholar 

  67. Jiao X, Beck KD, Stewart AL, Smith IM, Myers CE, Servatius RJ, et al. Effects of psychotropic agents on extinction of lever-press avoidance in a rat model of anxiety vulnerability. Front Behav Neurosci 2014;8:1–12, doi:https://doi.org/10.3389/fnbeh.2014.00322.

    Google Scholar 

  68. Portugal GS, Gould TJ. Bupropion dose-dependently reverses nicotine withdrawal deficits in contextual fear conditioning. Pharmacol Biochem Behav 2007;88:179–87, doi:https://doi.org/10.1016/j.pbb.2007.08.004.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Carmack SA, Howell KK, Rasaei K, Reas ET, Anagnostaras SG. Animal model of methylphenidate’s long-term memory-enhancing effects. Learn Mem 2014;21:82–9, doi:https://doi.org/10.1101/lm.033613.113.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang S, Yin Y, Lu H, Guo A. Increased dopaminergic signaling impairs aversive olfactory memory retention in Drosophila. Biochem Biophys Res Commun 2008;370:82–6, doi:https://doi.org/10.1016/j.bbrc.2008.03.015.

    CAS  PubMed  Google Scholar 

  71. Ueno T, Kume K. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays. Front Behav Neurosci 2014;8:303, doi:https://doi.org/10.3389/fnbeh.2014.00303.

    PubMed  PubMed Central  Google Scholar 

  72. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 2004;27:1–28, doi:https://doi.org/10.1146/annurev.neuro.27.070203.144157.

    CAS  PubMed  Google Scholar 

  73. Ables AZ, Baughman OL. Antidepressants: update on new agents and indications. Am Fam Phys 2003;67:547–54.

    Google Scholar 

  74. Preventing recurrent depression: long-term treatment for major depressive disorder. Prim Care Companion J Clin Psychiatry 2007;9:214–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Macêdo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Menezes, C.E., McIntyre, R.S., Chaves Filho, A.J.M. et al. The effect of paroxetine, venlafaxine and bupropion administration alone and combined on spatial and aversive memory performance in rats. Pharmacol. Rep 70, 1173–1179 (2018). https://doi.org/10.1016/j.pharep.2018.07.003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.07.003

Keywords

Navigation