Log in

Bupropion attenuates morphine tolerance and dependence: Possible role of glutamate, norepinephrine, inflammation, and oxidative stress

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Morphine — the main pillar of nociceptive pain management — systemic use is associated with development of tolerance and dependence. Tolerance and dependence lay a heavy burden in clinical pain management settings. An added weight to this dilemma is that effective, safe, and tolerable solution to this problem is still beyond reach. Antidepressants were reported as possible alleviators of opioid tolerance and dependence. One of the increasingly used antidepressant in clinical practice is bupropion given its high safety and tolerability profile.

Methods

The study was performed on male Balb-c mice weighing 20–30 g. Hot plate test was used for assessment of bupropion (5 mg/kg, ip) possible analgesic activity and enhancement of morphine acute analgesia (1 and 5 mg/kg, sc). Repeated morphine (5 mg/kg, sc) administration for 9 days developed tolerance and dependence, bupropion (5 mg/kg, ip) was concurrently administered to evaluate its potential to modulate these processes. We also biochemically analyzed bupropion effect on these phenomena through modulation of neurotransmitters (glutamate and norepinephrine), inflammatory status (nitric oxide), and pro-antioxidant balance (malondialdehyde and reduced glutathione).

Results

Bupropion was devoid of intrinsic analgesic activity and did not enhance morphine acute analgesia. However, bupropion significantly attenuated morphine tolerance and dependence development and abstinence syndrome with corresponding suppression of morphine induced changes in glutamate, norepinephrine, inflammatory status, and prooxidant-antioxidant balance.

Conclusion

Bupropion efficacy in attenuation of morphine tolerance and dependence with its high safety and tolerability profile provide an alternative option to conventional agents e.g., ketamine and clonidine to modulate these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gulur P., Williams L, Chaudhary S, Koury K, Jaff M. Opioid tolerance-a predictor of increased length of stay and higher readmission rates. Pain Physician 2014;17:E503–7.

    Article  PubMed  Google Scholar 

  2. Huxtable C, Roberts L, Somogyi A, MacIntyre P. Acute pain management in opioid-tolerant patients: a growing challenge. Anaesth Intensive Care 2011;39:804.

    Article  CAS  PubMed  Google Scholar 

  3. Martini L, Whistler JL. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol 2007;17:556–64.

    Article  CAS  PubMed  Google Scholar 

  4. Abdel-Zaher AO, Mostafa MG, Farghly HM, Hamdy MM, Omran GA, Al-Shaibani NK. Inhibition of brain oxidative stress and inducible nitric oxide synthase expression by thymoquinone attenuates the development of morphine tolerance and dependence in mice. Eur J Pharmacol 2013;702:62–70.

    Article  CAS  PubMed  Google Scholar 

  5. Wen Z-H, Chang Y-C, Cherng C-H, Wang J-J, Tao P-L, Wong C-S. Increasing of intrathecal CSF excitatory amino acids concentration following morphine challenge in morphine-tolerant rats. Brain Res 2004;995:253–9.

    Article  CAS  PubMed  Google Scholar 

  6. Jhamandas K, Marsala M, Ibuki T, Yaksh T. Spinal amino acid release and precipitated withdrawal in rats chronically infused with spinal morphine. J Neurosci 1996;16:2758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 1991;251:85–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ivanov A, Aston-Jones G. Local opiate withdrawal in locus coeruleus neurons in vitro. J Neurophysiol 2001;85:2388–97.

    Article  CAS  PubMed  Google Scholar 

  9. Gold M, Redmond DE, Kleber H. Clonidine blocks acute opiate-withdrawal symptoms. Lancet 1978;312:599–602.

    Article  Google Scholar 

  10. Aghajanian GK. Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature 1978;276:186–8.

    Article  CAS  PubMed  Google Scholar 

  11. Johnston IN, Milligan ED, Wieseler-Frank J, Frank MG, Zapata V, Campisi J, et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci 2004;24:7353–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kolesnikov YA, Pick CG, Pasternak GW. NG-nitro-L-arginine prevents morphine tolerance. Eur J Pharmacol 1992;221:399–400.

    Article  CAS  PubMed  Google Scholar 

  13. Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 2009;23:240–50.

    Article  CAS  PubMed  Google Scholar 

  14. Adams ML, Kalicki JM, Meyer ER, Cicero TJ. Inhibition of the morphine withdrawal syndrome by a nitric oxide synthase inhibitor, N G-nitro-L-arginine methyl ester. Life Sci 1993;52:PL245–9.

    Article  CAS  PubMed  Google Scholar 

  15. Muscoli C, Cuzzocrea S, Ndengele MM, Mollace V, Porreca F, Fabrizi F, et al. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J Clin Invest 2007;117:3530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kosten T, Oliveto A, Feingold A, Poling J, Sevarino K, McCance-Katz E, et al. Desipramine and contingency management for cocaine and opiate dependence in buprenorphine maintained patients. Drug Alcohol Depend 2003;70:315–25.

    Article  CAS  PubMed  Google Scholar 

  17. Liu K-S, Chen S-J, Chen Y-W, Sung K, Wang J-J. A dose-response study on the efficacy of tricyclic antidepressants on reducing morphine-withdrawal symptoms. Acta Anaesthesiol Taiwan 2013;51:18–21.

    Article  CAS  PubMed  Google Scholar 

  18. Gray AM. The effect of fluvoxamine and sertraline on the opioid withdrawal syndrome: a combined in vivo cerebral microdialysis and behavioural study. Eur Neuropsychopharmacol 2002;12:245–54.

    Article  CAS  PubMed  Google Scholar 

  19. Lu L, Su W-J, Yue W, Ge X, Su F, Pei G, et al. Attenuation of morphine dependence and withdrawal in rats by venlafaxine, a serotonin and noradrenaline reuptake inhibitor. Life Sci 2001;69:37–46.

    Article  CAS  PubMed  Google Scholar 

  20. Tai Y-H, Wang Y-H, Wang J-J, Tao P-L, Tung C-S, Wong C-S. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats. Pain 2006;124:77–86.

    Article  CAS  PubMed  Google Scholar 

  21. Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, et al. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet 2009;373:746–58.

    Article  CAS  PubMed  Google Scholar 

  22. Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim Care Companion J Clin Psychiatry 2004;6:159.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dwoskin LP, Rauhut AS, King-Pospisil KA, Bardo MT. Review of the pharmacology and clinical profile of bupropion, an antidepressant and tobacco use cessation agent. CNS Drug Rev 2006;12:178–207.

    Article  PubMed  Google Scholar 

  24. Foley KF, DeSanty KP, Kast RE. Bupropion: pharmacology and therapeutic applications. Expert Rev Neurother 2006;6:1249–65.

    Article  CAS  PubMed  Google Scholar 

  25. Semenchuk MR, Davis B. Efficacy of sustained-release bupropion in neuropathic pain: an open-label study. Clin J Pain 2000;16:6–11.

    Article  CAS  PubMed  Google Scholar 

  26. Aitken M, Kleinrock M, Pennente K, Lyle J, Nass D, Caskey L. Medicines use and spending in the US: a review of 2015 and outlook to 2020. Parsippany, NJ: IMS Institute for Healthcare Informatics; 2016.

    Google Scholar 

  27. Grabus SD, Carroll FI, Damaj MI. Bupropion and its main metabolite reverse nicotine chronic tolerance in the mouse. Nicotine Tob Res 2012;14:1356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joshi D, Naidu PS, Singh A, Kulkarni SK. Reversal of triazolam tolerance and withdrawal-induced hyperlocomotor activity and anxiety by bupropion in mice. Pharmacology 2005;75:93–7.

    Article  CAS  PubMed  Google Scholar 

  29. Penetar DM, Looby AR, Ryan ET, Maywalt MA, Lukas SE. Bupropion reduces some of the symptoms of marihuana withdrawal in chronic marihuana users: a pilot study. Subst Abuse: Res Treat 2012;6:SART. S9706.

    Google Scholar 

  30. Joshi J, Singh A, Naidu P, Kulkarni S. Protective effect of bupropion on morphine tolerance and dependence in mice. Methods Find Exp Clin Pharmacol 2004;26:623–6.

    Article  CAS  PubMed  Google Scholar 

  31. Habibi-asl B, Ghanbarzadeh S, Vaez H, Khodabandeh M. Effects of magnesium sulfate and bupropion on morphine induced tolerance in mice. Adv Biosci Clin Med 2015;3:21.

    Google Scholar 

  32. Redolat R, Vidal J, Gomez M, Carrasco M. Effects of acute bupropion administration on locomotor activity in adolescent and adult mice. Behav Pharmacol 2005;16:59–62.

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen J, Shannon N, Bero L, Moore K. Effects of acute and chronic bupropion on locomotor activity and dopaminergic neurons. Pharmacol Biochem Behav 1986;24:795–9.

    Article  CAS  PubMed  Google Scholar 

  34. Vogel HG, Vogel WH. Drug discovery and evaluation: pharmacological assays. Springer Science & Business Media; 2013.

  35. Bernt E, Bergmeyer HU. L-Glutamate UV-assay with glutamate dehydrogenase and NAD. Methods Enzym Anal 1974;4:1704–8.

    Article  Google Scholar 

  36. Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun 2012;26:469–79.

    Article  CAS  PubMed  Google Scholar 

  37. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001;5:62–71.

    Article  CAS  PubMed  Google Scholar 

  38. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 1968;25:192–205.

    Article  CAS  PubMed  Google Scholar 

  40. Erjavec MK, Coda BA, Nguyen Q, Donaldson G, Risler L, Shen DD. Morphine-Fluoxetine interactions in healthy volunteers: analgesia and side effects. J Clin Pharmacol 2000;40:1286–95.

    CAS  PubMed  Google Scholar 

  41. Kest B, Palmese C, Hopkins E, Adler M, Juni A, Mogil J. Naloxone-precipitated withdrawal jum** in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence. Neuroscience 2002;115:463–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lin TY, Yang T-T, Lu CW, Wang S-J. Inhibition of glutamate release by bupropion in rat cerebral cortex nerve terminals. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:598–606.

    Article  CAS  PubMed  Google Scholar 

  43. Akaoka H, Aston-Jones G. Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J Neurosci 1991;11:3830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pineda J, Torrecilla Ma, Martın-Ruiz R, Ugedo L. Attenuation of withdrawal-induced hyperactivity of locus coeruleus neurones by inhibitors of nitric oxide synthase in morphine-dependent rats. Neuropharmacology 1998;37:759–67.

    Article  CAS  PubMed  Google Scholar 

  45. Guiard BP, El Mansari M, Merali Z, Blier P. Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 2008;11:625–39.

    Article  CAS  PubMed  Google Scholar 

  46. Aghajanian G, Cedarbaum J, Wang R. Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res 1977;136:570–7.

    Article  CAS  PubMed  Google Scholar 

  47. Dong J, Blier P. Modification of norepinephrine and serotonin, but not dopamine neuronal firing by bupropion. Psychopharmacology (Berl) 2000;155:52–7.

    Article  Google Scholar 

  48. Dhir A, Kulkarni S. Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur J Pharmacol 2007;568:177–85.

    Article  CAS  PubMed  Google Scholar 

  49. Brustolim D, Ribeiro-dos-Santos R, Kast R, Altschuler E, Soares MBP. A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol 2006;6:903–7.

    Article  CAS  PubMed  Google Scholar 

  50. Li X-M, Chlan-Fourney J, Juorio AV, Bennett VL, Shrikhande S, Bowen RC. Antidepressants upregulate messenger RNA levels of the neuroprotective enzyme superoxide dismutase (SOD1). J Psychiatry Neurosci 2000;25:43.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Katzung BGaT, Anthony J. Basic and clinical pharmacology. 13th ed. San Francisco, USA: McGraw-Hill Medical; 2014.

    Google Scholar 

  52. Mehta V, Langford R. Acute pain management for opioid dependent patients. Anaesthesia 2006;61:269–76.

    Article  CAS  PubMed  Google Scholar 

  53. Moryl N, Santiago-Palma J, Kornick C, Derby S, Fischberg D, Payne R, et al. Pitfalls of opioid rotation: substituting another opioid for methadone in patients with cancer pain. Pain 2002;96:325–8.

    Article  CAS  PubMed  Google Scholar 

  54. Koppert W, Weigand M, Neumann F, Sittl R, Schuettler J, Schmelz M, et al. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anesth Analg 2004;98:1050–5.

    Article  CAS  PubMed  Google Scholar 

  55. Hajhashemi V, Khanjani P. Analgesic and anti-inflammatory activities of bupropion in animal models. Res Pharm Sci 2014;9:251.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pedersen LH, Nielsen AN, Blackburn-Munro G. Anti-nociception is selectively enhanced by parallel inhibition of multiple subtypes of monoamine transporters in rat models of persistent and neuropathic pain. Psychopharmacology (Berl) 2005;182:551–61.

    Article  CAS  Google Scholar 

  57. Gatch MB, Negus SS, Mello NK. Antinociceptive effects of monoamine reuptake inhibitors administered alone or in combination with mu opioid agonists in rhesus monkeys. Psychopharmacology (Berl) 1998;135:99–106.

    Article  CAS  Google Scholar 

  58. Naderi S, Ghaderi Pakdel F, Ashrafi Osalou M, Cankurt U. Acute systemic infusion of bupropion decrease formalin induced pain behavior in rat. Korean J Pain 2014;27:118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leitl MD, Negus S. Pharmacological modulation of neuropathic pain-related depression of behavior: effects of morphine, ketoprofen, bupropion and Δ-tetrahydrocannabinol on formalin-induced depression of intracranial self-stimulation (ICSS) in rats. Behav Pharmacol 2016;27:364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Barakat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdy, M.M., Elbadr, M.M. & Barakat, A. Bupropion attenuates morphine tolerance and dependence: Possible role of glutamate, norepinephrine, inflammation, and oxidative stress. Pharmacol. Rep 70, 955–962 (2018). https://doi.org/10.1016/j.pharep.2018.04.003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.04.003

Keywords

Navigation