Log in

Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease

  • Review Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Inflammatory bowel diseases (ulcerative colitis; Crohn’s disease) are debilitating relapsing inflammatory disorders affecting the gastrointestinal tract, with deleterious effect on quality of life, and increasing incidence and prevalence. Mucosal inflammation, due to altered microbiota, increased intestinal permeability and immune system dysfunction underlies the symptoms and may be caused in susceptible individuals by different factors (or a combination of them), including dietary habits and components. In this review we describe the influence of the Western diet, obesity, and different nutraceuticals/functional foods (bioactive peptides, phytochemicals, omega 3-polyunsaturated fatty acids, vitamin D, probiotics and prebiotics) on the course of IBD, and provide some hints that could be useful for nutritional guidance. Hopefully, research will soon offer enough reliable data to slow down the spread of the disease and to make diet a cornerstone in IBD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Owczarek D, Rodacki T, Domagała-Rodacka R, Cibor D, Mach T. Diet and nutritional factors in inflammatory bowel diseases. World J Gastroenterol 2016;22:895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 2006;3:390–407.

    Article  CAS  PubMed  Google Scholar 

  3. Barbalho SM, Goulart Rde A, Quesada K, Bechara MD, de Carvalho Ade C. Inflammatory bowel disease: can omega-3 fatty acids really help? Ann Gastroenterol 2016;29:37–43.

    PubMed  PubMed Central  Google Scholar 

  4. De Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 2016;13:13–27.

    Article  PubMed  CAS  Google Scholar 

  5. Dixon LJ, Kabi A, Nickerson KP, McDonald C. Combinatorial effects of diet and genetics on inflammatory bowel disease pathogenesis. Inflamm Bowel Dis 2015;21:912–22.

    Article  PubMed  Google Scholar 

  6. Zhang H, Hu CA, Kovacs-Nolan J, Mine Y. Bioactive dietary peptides and amino acids in inflammatory bowel disease. Amino Acids 2015;47:2127–41.

    Article  CAS  PubMed  Google Scholar 

  7. Ananthakrishnan AN, Khalili H, De Silva PS. Higher dietary fiber intake is associated with lower risk of Crohn’s disease but not ulcerative colitis — a prospective study. Gastroenterology 2010;142(Suppl 1):S–148.

    Google Scholar 

  8. Baumgart D, Carding S. Inflammatory bowel disease: cause and immunobiology. Lancet 2007;369:1627–40.

    Article  CAS  PubMed  Google Scholar 

  9. Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 2015;12:205–17.

    Article  PubMed  Google Scholar 

  10. Ng SC. Epidemiology of inflammatory bowel disease: focus on Asia. Best Pract Res Clin Gastroenterol 2014;28:363–72.

    Article  PubMed  Google Scholar 

  11. M’Kooma AE. Inflammatory bowel disease: an expanding global health problem. Clin Med Insights Gastroenterol 2013;6:33–47.

    Google Scholar 

  12. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 2002;13:3–9.

    Article  CAS  PubMed  Google Scholar 

  13. Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean diet; a literature review. Nutrients 2015;7:9139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jakubowski A, Zagórowicz E, Kraszewska E, Bartnik W. Rising hospitalization rates for inflammatory bowel disease in Poland. Pol Arch Med Wewn 2014;124:180–90.

    PubMed  Google Scholar 

  15. Reif S, Klein I, Lubin F, Farbstein M, Hallak A, Gilat T. Pre-illness dietary factors in inflammatory bowel disease. Gut 1997;40:754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Russel MG, Engels LG, Muris JW, Limonard CB, Volovics A, Brummer RJ, et al. Modern life in the epidemiology of inflammatory bowel disease: a case-control study with special emphasis on nutritional factors. Eur J Gastroenterol Hepatol 1998;10:243–9.

    Article  CAS  PubMed  Google Scholar 

  17. Sakamoto N, Kono S, Wakai K, Fukuda Y, Satomi M, Shimoyama T, et al. Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm Bowel Dis 2005;11:154–63.

    Article  PubMed  Google Scholar 

  18. Chan SS, Luben R, van Schaik F, Oldenburg B, Bueno de Mesquita HB, Hallmans G, et al. Carbohydrate intake in the etiology of Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 2014;20:2013–21.

    Article  PubMed  Google Scholar 

  19. Racine A, Carbonnel F, Chan SS, Hart AR, Bueno de Mesquita HB, Oldenburg B, et al. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC Study. Inflamm Bowel Dis 2016;22:345–54.

    Article  PubMed  Google Scholar 

  20. Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Fuchs CS, et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 2014;63:776–84.

    Article  CAS  PubMed  Google Scholar 

  21. Tjonneland A, Overvad K, Bergmann MM, Nagel G, Linseisen J, Hallmans G, et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut 2009;58:1606–11.

    Article  CAS  PubMed  Google Scholar 

  22. Cooney JM, Barnett MP, Brewster D, Knoch B, McNabb WC, Laing WA, et al. Proteomic analysis of colon tissue from interleukin-10 gene-deficient mice fed polyunsaturated fatty acids with comparison to transcriptomic analysis. J Proteome Res 2012;11:1065–77.

    Article  CAS  PubMed  Google Scholar 

  23. Peyrin-Biroulet L, Beisner J, Wang G, Nuding S, Oommen ST, Kelly D, et al. Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci USA 2010;107:8772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bassaganya-Riera J, Hontecillas R. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care 2010;13:569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferreira P, Cravo M, Guerreiro CS, Tavares L, Santos PM, Brito M. Fat intake interacts with polymorphisms of Caspase9, FasLigand and PPARgamma apoptotic genes in modulating Crohn’s disease activity. Clin Nutr 2010;29:819–23.

    Article  CAS  PubMed  Google Scholar 

  26. De Silva PS, Luben R, Shrestha SS, Khaw KT, Hart AR. Dietary arachidonic and oleic acid intake in ulcerative colitis etiology: a prospective cohort study using 7-day food diaries. Eur J Gastroenterol Hepatol 2014;26:11–8.

    Article  PubMed  CAS  Google Scholar 

  27. Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Korzenik JR, et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 2013;145:970–7.

    Article  CAS  PubMed  Google Scholar 

  28. Gustafson B, Hammarstedt A, Andersson CX, Smith U. Inflamed adipose tissue a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 2007;27:2276–83.

    Article  CAS  PubMed  Google Scholar 

  29. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995;95:2409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greenfield JR, Samaras K, Jenkins AB, Kelly PJ, Spector TD, Gallimore JR, et al. Obesity is an important determinant of baseline serum C-reactive protein concentration in monozygotic twins, independent of genetic influences. Circulation 2004;109:3022–8.

    Article  CAS  PubMed  Google Scholar 

  31. Chan SSM, Luben R, Olsen A, Tjonneland A, Kaaks R, Teucher B, et al. Body mass index and the risk for Crohn’s disease and ulcerative colitis: data from a European prospective cohort study (The IBD in EPIC Study). Am J Gastroenterol 2013;108:575–82.

    Article  PubMed  Google Scholar 

  32. Dong J, Chen Y, Tang Y, Xu F, Yu C, Li Y, et al. Body mass index is associated with inflammatory bowel disease: a systematic review and meta-analysis. PLoS One 2015;10:e0144872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fink C, Karagiannides I, Bakirtzi K, Pothoulakis C. Adipose tissue and inflammatory bowel disease pathogenesis. Inflamm Bowel Dis 2012;18:1550–7.

    Article  PubMed  Google Scholar 

  34. Weakley FL, Turnbull RB. Recognition of regional ileitis in the operating room. Dis Colon Rectum 1971;14:17–23.

    Article  CAS  PubMed  Google Scholar 

  35. Sheehan AL, Warren BF, Gear MW, Shepherd NA. Fat-wrap** in Crohn’s disease: pathological basis and relevance to surgical practice. Br J Surg 1992;79:955–8.

    Article  CAS  PubMed  Google Scholar 

  36. Zulian A, Cancello R, Micheletto G, Gentilini D, Gilardini L, Danelli P, et al. Visceral adipocytes: old actors in obesity and new protagonists in Crohn’s disease? Gut 2012;61:86–94.

    Article  CAS  PubMed  Google Scholar 

  37. González-Rey E, Anderson P, González MA, Rico L, Büscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 2009;58:929–39.

    Article  PubMed  CAS  Google Scholar 

  38. Majumder K, Mine Y, Wu J. The potential of food-protein derived anti-inflammatory peptides against various chronic inflammatory diseases. J Sci Food Agric 2016;96:2303–11.

    Article  CAS  PubMed  Google Scholar 

  39. Lih-Bordy L, Powell SR, Collier KP, Reddy GM. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig Dis Sci 1996;41:2078–86.

    Article  Google Scholar 

  40. Li YW, Li B. Characterization of structure-antioxidant activity relationship of peptides in free radical systems using QSAR models: key sequence positions and their amino acid properties. J Theor Biol 2013;318:29–43.

    Article  CAS  PubMed  Google Scholar 

  41. Laing B, Han DY, Ferguson LR. Candidate genes involved in beneficial or adverse responses to commonly eaten brassica vegetables in a New Zealand Crohn’s disease cohort. Nutrients 2013;5:5046–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hou Y, Chu C, Ko T, Yeh C, Yeh S. Effects of alanyl-glutamine dipeptide on the expression of colon-inflammatory mediators during the recovery phase of colitis induced by dextran sulfate sodium. Eur J Nutr 2013;52:1089–98.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Kovacs-Nolan J, Kodera T, Eto Y, Mine Y. γ-Glutamyl cysteine and γ-glutamyl valine inhibit TNF-α signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochim Biophys Acta 2015;5:792–804.

    Article  CAS  Google Scholar 

  44. Ortega-González M, Capitán-Cañadas F, Requena P, Ocón B, Romero-Calvo I, Aranda C, et al. Validation of bovine glycomacropeptide as an intestinal anti-inflammatory nutraceutical in the lymphocyte-transfer model of colitis. Br J Nutr 2014;7:1202–12.

    Article  CAS  Google Scholar 

  45. Utrilla MP, Peinado MJ, Ruiz R, Rodriguez-Nogales A, Algieri F, Rodriguez-Cabezas ME, et al. Pea (Pisum sativum L.) seed albumin extracts show antiinflammatory effect in the DSS model of mouse colitis. Mol Nutr Food Res 2015;59:807–19.

    Article  CAS  PubMed  Google Scholar 

  46. Wolf AM, Wolf D, Rumpold H, Moschem AR, Kaser A, Obrist P, et al. Over-expression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease. Clin Immunol 2004;113:47–55.

    Article  CAS  PubMed  Google Scholar 

  47. Kim CJ, Kovacs-Nolan JA, Yang C, Archbold T, Fan MZ, Mine Y. L-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J Nutr Biochem 2010;21:468–75.

    Article  CAS  PubMed  Google Scholar 

  48. Kretzmann NA, Fillmann H, Mauriz JL, Marroni CA, Marroni A, Gonzalez-Gallego J, et al. Effects of glutamine on proinflammatory gene expression and activation of nuclear factor kappa B and signal transducers and activators of transcription in TNBS-induced colitis. Inflamm Bowel Dis 2008;4:1504–13.

    Article  Google Scholar 

  49. Fillmann H, Kretzmann NA, San-Miguel B. Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappaB pathway in an experimental model of colitis in the rat. Toxicology 2007;236:217–26.

    Article  CAS  PubMed  Google Scholar 

  50. Faure M, Mettraux C, Moennoz D, Godin J, Vuichoud J, Rochat F, et al. Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium-treated rats. J Nutr 2006;136:1558–64.

    Article  CAS  PubMed  Google Scholar 

  51. Kim CJ, Kovacs-Nolan J, Yang C, Archbold T, Fan MZ, Mine Y. L-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis. Biochim Biophys Acta 2009;1790:1161–9.

    Article  CAS  PubMed  Google Scholar 

  52. Adibi SA. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 1997;113:332–40.

    Article  CAS  PubMed  Google Scholar 

  53. Son DO, Satsu H, Kiso Y, Totsuka M, Shimizu M. Inhibitory effect of carnosine on interleukin-8 production in intestinal epithelial cells through translational regulation. Cytokine 2008;42:265–76.

    Article  CAS  PubMed  Google Scholar 

  54. Kovacs-Nolan J, Zhang H, Ibuki M, Nakamori T, Yoshiura K, Turner PV, et al. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim Biophys Acta 2012;1820:1753–63.

    Article  CAS  PubMed  Google Scholar 

  55. Quinn SJ, Ye C, Diaz R, Kifor O, Bai M, Vassilev P, et al. The Ca2+-sensing receptor: a target for polyamines. Am J Physiol Cell Physiol 1997;273: C1315–23.

    Article  CAS  Google Scholar 

  56. Pacheco II, MacLeod RJ. CaSR stimulates scretion of Wnt5a from colonic myofibroblasts to stimulate CDX2 and sucraseisomaltase using Ror2 on intestinal epithelia. Am J Physiol Gastrointest Liver Physiol 2008;295: G748–59.

    Article  CAS  PubMed  Google Scholar 

  57. Bresalier RS. Calcium, chemoprevention, and cancer: a small step forward (a long way to go). Gastroenterology 1999;116:1261–3.

    Article  CAS  PubMed  Google Scholar 

  58. Hebert SC, Cheng S, Geibel J. Functions and roles of the extracellular Ca2+-sensing receptor in the gastrointestinal tract. Cell Calcium 2004;35:239–47.

    Article  CAS  PubMed  Google Scholar 

  59. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta 2015;1851: 469–84.

    Article  CAS  PubMed  Google Scholar 

  60. Tabbaa M, Golubic M, Roizen MF, Bernstein AM. Docosahexaenoic acid, inflammation, and bacterial dysbiosis in relation to periodontal disease, inflammatory bowel disease, and the metabolic syndrome. Nutrients 2013;5:3299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW, et al. The effect of dietary supplementation with n-3 fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989;320:265–70.

    Article  CAS  PubMed  Google Scholar 

  62. Belluzzi A, Boschi S, Brignola C, Munarini A, Cariani G, Miglio F. Polyunsaturated fatty acids and inflammatory bowel disease. Am J Clin Nutr 2000; 71(1 Suppl):339S–42S.

    Article  CAS  PubMed  Google Scholar 

  63. Fisher M, Upchurch KS, Levine PH, Johnson MH, Vaudreuil CH, Natale A, et al. Effect of dietary fish oil supplementation on polymorphonuclear leukocyte inflammatory potential. Inflammation 1986;10:387–91.

    Article  CAS  PubMed  Google Scholar 

  64. Wakefield AJ, Sawyerr AM, Dhillon AP, Pittilo RM, Rowles PM, Lewis AA, et al. Pathogenesis of Crohn’s disease: multifocal gastrointestinal infarction. Lancet 1989;1:1057–62.

    Article  Google Scholar 

  65. Webberley MJ, Hart MT, Melikian V. Thromboembolism in inflammatory bowel disease: role of platelets. Gut 1993;34:247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nieto N, Torres MI, Rios A, Gil A. Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis. J Nutr 2002;132:11–9.

    Article  CAS  PubMed  Google Scholar 

  67. Hudert CA, Weylandt KH, Lu Y, Wang J, Hong S, Dignass A, et al. Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proc Natl Acad Sci USA 2006;103:11276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arita M, Yoshida M, Hong S, Tjonahen E, Glickman JN, Petasis NA, et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci USA 2005;102:7621–6.

    Article  CAS  Google Scholar 

  69. Pearl DS, Masoodi M, Eiden M, Brümmer J, Gullick D, McKeever TM, et al. Altered colonic mucosal availability of n-3 and n-6 polyunsaturated fatty acids in ulcerative colitis and the relationship to disease activity. J Crohns Colitis 2014;8:70–9.

    Article  PubMed  Google Scholar 

  70. Turner D, Steinhart TH, Griffiths AM. Omega 3 fatty acids (fish oil) for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev 2007;18:CD006443.

    Google Scholar 

  71. Turner D, Zlotkin SH, Shah PS, Griffiths AM. Omega 3 fatty acids (fish oil) for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev 2009;21:CD006320.

    Google Scholar 

  72. Meeker S, Seamons A, Paik J, Treuting PM, Brabb T, Grady WM, et al. Increased dietary vitamin D suppresses MAPK signaling, colitis, and colon cancer. Cancer Res 2014;74:4398–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ananthakrishnan AN, Cheng SC, Cai T, Cagan A, Gainer VS, Szolovits P, et al. Association between reduced plasma 25-hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2014;12:821–7.

    Article  CAS  PubMed  Google Scholar 

  74. Shivananda S, Lennard-Jones J, Logan R, Fear N, Price A, Carpenter L, et al. Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut 1996;39:690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Sullivan M. Vitamin D as a novel therapy in inflammatory bowel disease: new hope or false dawn? Proc Nutr Soc 2015;74:5–12.

    Article  PubMed  CAS  Google Scholar 

  76. Mouli VP, Ananthakrishnan AN. Review article: vitamin D and inflammatory bowel diseases. Aliment Pharmacol Ther 2014;39:125–36.

    Article  CAS  PubMed  Google Scholar 

  77. Wasko-Czopnik D, Paradowski L. The influence of deficiencies of essential trace elements and vitamins on the course of Crohn’s disease. Adv Clin Exp Med 2012;21:5–11.

    PubMed  Google Scholar 

  78. Garg M, Lubel JS, Sparrow MP, Holt SG, Gibson PR. Review article: vitamin D and inflammatory bowel disease-established concepts and future directions. Aliment Pharmacol Ther 2012;36:324–44.

    Article  CAS  PubMed  Google Scholar 

  79. Ulitsky A, Ananthakrishnan AN, Naik A, Skaros S, Zadvornova Y, Binion DG, et al. Vitamin D deficiency in patients with inflammatory bowel disease: association with disease activity and quality of life. JPEN J Parenter Enteral Nutr 2011;35:308–16.

    Article  CAS  PubMed  Google Scholar 

  80. Ghishan FK, Kiela PR. Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 2011;300:G191–201.

    Article  CAS  PubMed  Google Scholar 

  81. Lee Y, Kim M, Choi K, Kim J, Bae W, Kim S, et al. Relationship between inflammation biomarkers, antioxidant vitamins, and bone mineral density in patients with metabolic syndrome. Nutr Res Pract 2011;5:150–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Laverny G, Penna G, Vetrano S, Correale C, Nebuloni M, Danese S, et al. Efficacy of a potent and safe vitamin D receptor agonist for the treatment of inflammatory bowel disease. Immunol Lett 2010;131:49–58.

    Article  CAS  PubMed  Google Scholar 

  83. Chen SW, Wang PY, Zhu J, Chen GW, Zhang JL, Chen ZY, et al. Protective effect of 1,25-dihydroxyvitamin D3 on lipopolysaccharide-induced intestinal epithelial tight junction injury in Caco-2 cell monolayers. Inflammation 2015;38:375–83.

    Article  CAS  PubMed  Google Scholar 

  84. Schauber J, Rieger D, Weiler F, Wehkamp J, Eck M, Fellermann K, et al. Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 2006;18:615–21.

    Article  CAS  PubMed  Google Scholar 

  85. Verway M, Behr MA, White JH. Vitamin D, NOD2, autophagy and Crohn’s disease. Expert Rev Clin Immunol 2010;6:505–8.

    Article  PubMed  Google Scholar 

  86. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol 2010;28:573–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Raftery T, O’Sullivan M. Optimal vitamin D levels in Crohn’s disease: a review. Proc Nutr Soc 2015;74:56–66.

    Article  CAS  PubMed  Google Scholar 

  88. Reich KM, Fedorak RN, Madsen K, Kroeker KI. Vitamin D improves inflammatory bowel disease outcomes: basic science and clinical review. World J Gastroenterol 2014;20:4934–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Cross HS, Nittke T, Kallay E. Colonic vitamin D metabolism: implications for the pathogenesis of inflammatory bowel disease and colorectal cancer. Mol Cell Endocrinol 2011;347:70–9.

    Article  CAS  PubMed  Google Scholar 

  90. Ananthakrishnan AN, Cagan A, Gainer VS, Cai T, Cheng SC, Savova G, et al. Normalization of plasma 25-hydroxy vitamin D is associated with reduced risk of surgery in Crohn’s disease. Inflamm Bowel Dis 2013;19:1921–7.

    PubMed  Google Scholar 

  91. Zator ZA, Cantu SM, Konijeti GG, Nguyen DD, Sauk J, Yajnik V, et al. Pretreatment 25-hydroxyvitamin D levels and durability of anti-tumor necrosis factor-α therapy in inflammatory bowel diseases. JPEN J Parenter Enteral Nutr 2014;38:385–91.

    Article  PubMed  CAS  Google Scholar 

  92. Hlavaty T, Krajcovicova A, Payer J. Vitamin D therapy in inflammatory bowel diseases: who, in what form, and how much? J Crohns Colitis 2015;9:198–209.

    Article  PubMed  Google Scholar 

  93. Biedermann L, Mwinyi J, Scharl M, Frei P, Zeitz J, Kullak-Ublick GA, et al. Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis-an open pilot study. J Crohns Colitis 2013;7:271–9.

    Article  PubMed  Google Scholar 

  94. Joo M, Kim HS, Kwon TH, Palikhe A, Zaw TS, Jeong JH, et al. Anti-inflammatory effects of flavonoids on TNBS-induced colitis of rats. Korean J Physiol Pharmacol 2015;19:43–50.

    Article  CAS  PubMed  Google Scholar 

  95. Hanai H, Iida T, Takeuchi K, Watanabe F, Maruyama Y, Andoh A, et al. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 2006;4:1502–6.

    Article  CAS  PubMed  Google Scholar 

  96. Arafa HM, Hemeida RA, El-Bahrawy AL, Hamada FM. Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model. Food Chem Toxicol 2009;47:1311–7.

    Article  CAS  PubMed  Google Scholar 

  97. Unno T, Sakuma M, Mitsuhashi S. Effect of dietary supplementation of (−)-epigallocatechin gallate on gut microbiota and biomarkers of colonic fermentation in rats. J Nutr Sci Vitaminol (Tokyo) 2014;60:213–9.

    Article  CAS  Google Scholar 

  98. Martin H, Burgess EJ, Smith WA, McGhie TK, Cooney JM, Lunken RC, et al. JAK2 and AMP-kinase inhibition in vitro by food extracts, fractions and purified phytochemicals. Food Funct 2015;6:305–12.

    PubMed  Google Scholar 

  99. Ahmed Nasef N, Mehta S, Ferguson LR. Dietary interactions with the bacterial sensing machinery in the intestine: the plant polyphenol case. Front Genet 2014;5:64. http://dx.doi.org/10.3389/fgene.2014.00064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cammarota G, laniro G, Bibbò S, Gasbarrini A. Gut microbiota modulation: probiotics, antibiotics or fecal microbiota transplantation? Intern Emerg Med 2014;9:365–73.

    Article  PubMed  Google Scholar 

  101. Marteau P. Therapy: probiotic-enriched artichokes for abdominal discomfort. Nat Rev Gastroenterol Hepatol 2012;9:251–2.

    Article  PubMed  Google Scholar 

  102. Burke DA, Axon AT. Ulcerative colitis and Escherichia coli with adhesive properties. J Clin Pathol 1987;40:782–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Favier C, Neut C, Mizon C, Cortot A, Colombel JF, Mizon J. Fecal beta-D-galactosidase production and Bifidobacteria are decreased in Crohn’s disease. Dig Dis Sci 1997;42:817–22.

    Article  CAS  PubMed  Google Scholar 

  104. Malchow HA. Crohn’s disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn’s disease? J Clin Gastroenterol 1997;25:653–8.

    Article  CAS  PubMed  Google Scholar 

  105. Gupta P, Andrew H, Kirschner BS, Guandalini S. Is Lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. J Pediatr Gastroenterol Nutr 2000;31:453–7.

    Article  CAS  PubMed  Google Scholar 

  106. Ardita CS, Mercante JW, Kwon YM, Luo L, Crawford ME, Powell DN, et al. Epithelial adhesion mediated by pilin SpaC is required for Lactobacillus rhamnosus GG-induced cellular responses. Appl Environ Microbiol 2014;80:5068–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Takamura T, Harama D, Fukumoto S, Nakamura Y, Shimokawa N, Ishimaru K, et al. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis. Immunol Cell Biol 2011;89:817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 2000;45:1462–4.

    Article  CAS  PubMed  Google Scholar 

  109. Bourreille A, Cadiot G, Le Dreau G, Laharie D, Beaugerie L, Dupas JL, et al. Saccharomyces boulardii does not prevent relapse of Crohn’s disease. FLORABEST Study Group. Clin Gastroenterol Hepatol 2013;11:982–7.

    Article  Google Scholar 

  110. Ishikawa H, Akedo I, Umesaki Y, Tanaka R, Imaoka A, Otani T. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr 2003;22:56–63.

    Article  PubMed  Google Scholar 

  111. Osman N, Adawi D, Molin G, Ahrne S, Berggren A, Jeppsson B. Bifidobacterium infantis strains with and without a combination of oligofructose and inulin (OFI) attenuate inflammation in DSS-induced colitis in rats. BMC Gastroenterol 2006;6:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Camelo-Castillo A, Benítez-Páez A, Belda-Ferre P, Cabrera-Rubio R, Mira A. Streptococcus dentisani sp. nov., a novel member of the mitis group. Int J Syst Evol Microbiol 2014;64:60–5.

    Article  CAS  PubMed  Google Scholar 

  113. van Zanten GC, Knudsen A, Röytiö H, Forssten S, Lawther M, Blennow A, et al. The effect of selected symbiotics on microbial composition and short-chain fatty acid production in a model system of the human colon. PLoS One 2012;7:e47212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Valenzuela JF, Pinuer L, Cancino AG, Yáñez RB. Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO_979C in continuous culture. Appl Microbiol Biotechnol 2015;99:6417–29.

    Article  CAS  PubMed  Google Scholar 

  115. Cruz-Guerrero A, Hernández-Sánchez H, Rodríguez-Serrano G, Gómez-Ruiz L, García-Garibay M, Figueroa-Gonzâlez I. Commercial probiotic bacteria and prebiotic carbohydrates: a fundamental study on prebiotics uptake, antimicrobials production and inhibition of pathogens. J Sci Food Agric 2014;94: 2246–52.

    Article  CAS  PubMed  Google Scholar 

  116. Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 2003;52:827–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. García-Lafuente A, Antolín M, Guarner F, Crespo E, Malagelada JR. Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut 2001;48:503–7.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, et al. Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS One 2015;10:e0134050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Park JH, Um JI, Lee BJ, Goh JS, Park SY, Kim WS, et al. Encapsulated Bifidobacterium bifidum potentiates intestinal IgA production. Cell Immunol 2002;219:22–7.

    Article  CAS  PubMed  Google Scholar 

  120. Kawahara T, Takahashi T, Oishi K, Tanaka H, Masuda M, Takahashi S, et al. Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol Immunol 2015;59:1–12.

    Article  CAS  PubMed  Google Scholar 

  121. Yoda K, He F, Kawase M, Miyazawa K, Hiramatsu M. Oral administration of Lactobacillus gasseri TMC0356 stimulates peritoneal macrophages and attenuates general symptoms caused by enteropathogenic Escherichia coli infection. J Microbiol Immunol Infect 2014;47:81–6.

    Article  CAS  PubMed  Google Scholar 

  122. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008;453(7195):620–5.

    Article  CAS  PubMed  Google Scholar 

  123. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 2010;328(5986):1705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Okada Y, Tsuzuki Y, Narimatsu K, Sato H, Ueda T, Hozumi H, et al. 1,4-Dihydroxy-2-naphthoic acid from Propionibacterium freudenreichii reduces inflammation in interleukin-10-deficient mice with colitis by suppressing macrophage-derived proinflammatory cytokines. J Leukoc Biol 2013;94: 473–80.

    Article  CAS  PubMed  Google Scholar 

  125. González-Rodríguez I, Sánchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P, et al. Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 2012;78:3992–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008;295: G1025–34.

    Article  CAS  PubMed  Google Scholar 

  127. Macho Fernández E, Pot B, Grangette C. Beneficial effect of probiotics in IBD: are peptidogycan and NOD2 the molecular key effectors? Gut Microbes 2011;2:280–6.

    Article  PubMed  Google Scholar 

  128. Muraca M, Putignani L, Fierabracci A, Teti A, Perilongo G. Gut microbiotaderived outer membrane vesicles: under-recognized major players in health and disease? Discov Med 2015;19:343–8.

    PubMed  Google Scholar 

  129. Elmi A, Nasher F, Jagatia H, Gundogdu O, Bajaj-Elliott M, Wren BW, et al. Campylobacter jejuni outer membrane vesicle-associated proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal epithelial cell E-cadherin and occludin. Cell Microbiol 2016;18:561–72.

    Article  CAS  PubMed  Google Scholar 

  130. Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One 2013;8:e76520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Marcinkiewicz J, Ciszek M, Bobek M, Strus M, Heczko PB, Kurnyta M, et al. Differential inflammatory mediator response in vitro from murine macrophages to lactobacilli and pathogenic intestinal bacteria. Int J Exp Pathol 2007;88:155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hevia A, Delgado S, Sánchez B, Margolles A. Molecular players involved in the interaction between beneficial bacteria and the immune system. Front Microbiol 2015;6:1285.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007;104:13780–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2 + D phylogenetic group in inflammatory bowel disease. Gut 2007;56:669–75.

    Article  CAS  PubMed  Google Scholar 

  135. Laubitz D, Harrison CA, Midura-Kiela MT, Ramalingam R, Larmonier CB, Chase JH, et al. Reduced epithelial Na+/H+ exchange drives gut microbial dysbiosis and promotes inflammatory response in T cell-mediated murine colitis. PLoS One 2016;11(4):e0152044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol 2004;99:2393–404.

    Article  CAS  PubMed  Google Scholar 

  137. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Núñez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005;307:731–4.

    Article  CAS  PubMed  Google Scholar 

  138. Lim CC, Ferguson LR, Tannock GW. Dietary fibres as “prebiotics”: implications for colorectal cancer. Mol Nutr Food Res 2005;49:609–19.

    Article  PubMed  Google Scholar 

  139. Roberfroid MB. Prebiotics and synbiotics: concepts and nutritional properties. Br J Nutr 1998;80:S197–202.

    Article  CAS  PubMed  Google Scholar 

  140. Capitán-Cañadas F, Ocón B, Aranda CJ, Anzola A, Suárez MD, Zarzuelo A, et al. Fructooligosaccharides exert intestinal anti-inflammatory activity in the CD4+ CD62L+ T cell transfer model of colitis in C57BL/6J mice. Eur J Nutr 2015. http://dx.doi.org/10.1007/s00394-015-0962-6.

  141. Cherbut C, Michel C, Lecannu G. The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats. J Nutr 2003;133:21–7.

    Article  CAS  PubMed  Google Scholar 

  142. Hoentjen F, Welling GW, Harmsen HJ, Zhang X, Snart J, Tannock GW, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis 2005;11:977–85.

    Article  PubMed  Google Scholar 

  143. Lara-Villoslada F, Debras E, Nieto A, Concha A, Galvez J, Lopez-Huertas E, et al. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis. Clin Nutr 2005;25: 477–88.

    Article  CAS  Google Scholar 

  144. Johansson ME, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 2013;10:352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Johansson ME, Gustafsson JK, Holmán-Larsson J, Jabbar KS, **a L, Xu H, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 2014;63: 281–91.

    Article  CAS  PubMed  Google Scholar 

  146. Schwerbrock NM, Makkink MK, van der Sluis M, Buller HA, Einerhand AW, Sartor RB, et al. Interleukin 10-deficient mice exhibit defective colonic Muc2 synthesis before and after induction of colitis by commensal bacteria. Inflamm Bowel Dis 2004;10:811–23.

    Article  PubMed  Google Scholar 

  147. Cresci G, Nagy LE, Ganapathy V. Lactobacillus GG and tributyrin supplementation reduce antibiotic-induced intestinal injury. JPEN J Parenter Enteral Nutr 2013;37:763–74.

    Article  CAS  PubMed  Google Scholar 

  148. Richman E, Rhodes JM. Review article: evidence-based dietary advice for patients with inflammatory bowel disease. Aliment Pharmacol Ther 2013; 38:1156–71.

    Article  CAS  PubMed  Google Scholar 

  149. Fell JM. Control of systemic and local inflammation with transforming growth factor beta containing formulas. J Parenter Enteral Nutr 2005;29: S126–8.

    Article  CAS  Google Scholar 

  150. Triantafillidis JK, Vagianos C, Papalois AE. The role of enteral nutrition in patients with inflammatory bowel disease: current aspects. Biomed Res Int 2015;2015:197167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Hou JK, Lee D, Lewis J. Diet and inflammatory bowel disease: review of patient-targeted recommendations. Clin Gastroenterol Hepatol 2014;12: 1592–600.

    Article  PubMed  Google Scholar 

  152. Kornbluth A, Sachar DB, Practice Parameters Committee of the American College of Gastroenterology. Ulcerative colitis practice guidelines in adults: American College Of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 2010;105:501–23. quiz 524.

    Article  PubMed  Google Scholar 

  153. Lichtenstein GR, Hanauer SB, Sandborn WJ, Practice Parameters Committee of American College of Gastroenterology. Management of Crohn’s disease in adults. Am J Gastroenterol 2009;104:465–83. quiz 464, 484.

    Article  PubMed  Google Scholar 

  154. Turner D, Levine A, Escher JC, Griffiths AM, Russell RK, Dignass A, et al. Management of pediatric ulcerative colitis: joint ECCO and ESPGHAN evidence-based consensus guidelines. J Pediatr Gastroenterol Nutr 2012;55: 340–61.

    Article  CAS  PubMed  Google Scholar 

  155. National Institute for Health and Clinical Excellence. Crohn’s disease: Management in adults, children and young people. National Clinical Guideline Centre; 2012 October.

  156. Ferguson LR. Nutritional modulation of gene expression: might this be of benefit to individuals with Crohn’s disease? Front Immunol 2015;6:467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Cabré E, Domenech E. Impact of environmental and dietary factors on the course of inflammatory bowel disease. World J Gastroenterol 2012;18: 3814–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Song CH, Vadheim CM, Snape WJ, Heiner DC. Antibodies in patients with inflammatory bowel disease and the apparent influence of medications. J Clin Lab Immunol 1995;46:143–54.

    CAS  PubMed  Google Scholar 

  159. Nijeboer P, Bontkes HJ, Mulder CJ, Bouma G. Non-celiac gluten sensitivity. Is it in the gluten or the grain? J Gastrointestin Liver Dis 2013;22:435–40.

    PubMed  Google Scholar 

  160. Casella G, Di Bella C, Salemme M, Villanacci V, Antonelli E, Baldini V, et al. Celiac disease, non-celiac gluten sensitivity and inflammatory bowel disease. Minerva Gastroenterol Dietol 2015;61:267–71.

    CAS  PubMed  Google Scholar 

  161. Herfarth HH, Martin CF, Sandler RS, Kappelman MD, Long MD. Prevalence of a gluten-free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases. Inflamm Bowel Dis 2014;20:1194–7.

    Article  PubMed  Google Scholar 

  162. Aziz I, Hadjivassiliou M, Sanders DS. The spectrum of noncoeliac gluten sensitivity. Nat Rev Gastroenterol Hepatol 2015;12:516–26.

    Article  CAS  PubMed  Google Scholar 

  163. Muir JG, Gibson PR. The low FODMAP diet for treatment of irritable bowel syndrome and other gastrointestinal disorders. Gastroenterol Hepatol (NY) 2013;9:450–2.

    Google Scholar 

  164. Donnellan CF, Yann LH, Lal S. Nutritional management of Crohn’s disease. Therap Adv Gastroenterol 2013;6:231–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Rastall RA, Gibson GR. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol 2015;32:42–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Abalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uranga, J.A., López-Miranda, V., Lombó, F. et al. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease. Pharmacol. Rep 68, 816–826 (2016). https://doi.org/10.1016/j.pharep.2016.05.002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.05.002

Keywords

Navigation