Log in

Collimator choice in cardiac SPECT with I-123-labeled tracers

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Septal penetration of high-energy photons may degrade the quality of single photon emission computed tomography (SPECT) of the heart with iodine 123-labeled tracers. We investigated the impact of collimator choice on cardiac SPECT with I-123.

Methods and Results

SPECT of a thoracic phantom containing I-123 solution was performed with a low-energy high-resolution (LEHR) collimator, special LEHR (SLEHR) collimator, and medium-energy (ME) collimator, and the cavity-to-myocardium contrast, wall thickness, and defect contrast were compared among the collimators. For all indices, use of the SLEHR collimator yielded the best results. Comparison between the LEHR and ME collimators revealed that the cavity-to-myocardium contrast and contrast for large defects were better with the ME collimator, whereas wall thickness and contrast for small defects were similar. Scatter correction by the triple-energy window method improved the indices examined; however, the superiority of the SLEHR collimator was still observed after correction.

Conclusions

Collimator choice substantially influences the quality of cardiac SPECT with I-123-labeled agents, and an appropriate collimator needs to be selected in consideration of septal penetration and spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobbeleir AA, Hambye AS, Franken PR. Influence of high-energy photons on the spectrum of iodine-123 with low- and mediumenergy collimators: consequences for imaging with 123I-labelled compounds in clinical practice. Eur J Nucl Med 1999;26:655–8.

    Article  PubMed  CAS  Google Scholar 

  2. Macey DJ, DeNardo GL, DeNardo SJ, Hines HH. Comparison of low- and medium-energy collimators for SPECT imaging with iodine-123-labeled antibodies. J Nucl Med 1986;27:1467–74.

    PubMed  CAS  Google Scholar 

  3. De Geeter FD, Franken PR, Defrise M, et al. Optimal collimator choice for sequential iodine-123 and technetium-99m imaging. Eur J Nucl Med 1996;23:768–74.

    Article  PubMed  CAS  Google Scholar 

  4. Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med 1996;37:1832–6.

    PubMed  CAS  Google Scholar 

  5. Dobbeleir AA, Hambye ASE, Franken PR. Influence of methodology on the presence and extent of mismatching between 99mTc- MIBI and 123I-BMIPP in myocardial viability studies. J Nucl Med 1999;40:707–14.

    PubMed  CAS  Google Scholar 

  6. Bolmsjo MS, Persson BR, Strand SE. Imaging 123I with a scintillation camera. A study of detection performance and quality factor concepts. Phys Med Biol 1977;22:266–77.

    Article  PubMed  CAS  Google Scholar 

  7. Patel AD, Iskandrian AE. MIBG imaging. J Nucl Cardiol 2002;9:75–944.

    Article  PubMed  Google Scholar 

  8. Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart: what have we learnt clinically? Eur J Nucl Med 2000;27:1–6.

    Article  PubMed  CAS  Google Scholar 

  9. Inoue Y, Suzuki A, Shirouzu I, et al. Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol 2003;10:623–32.

    Article  PubMed  Google Scholar 

  10. Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S.. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34:2216–211.

    PubMed  CAS  Google Scholar 

  11. Inoue Y, Shirouzu I, Machida T, et al..Physical characteristics of low and medium energy collimators for 123I imaging and simultaneous dual-isotope imaging. Nucl Med Commun 2003;24:1195–202.

    Article  PubMed  CAS  Google Scholar 

  12. Gilland DR, Jaszczak RJ, Turkington TG, Greer KL, Coleman RE. Volume and activity quantitation with iodine-123 SPECT. J Nucl Med 1994;35:1707–13.

    PubMed  CAS  Google Scholar 

  13. Ogasawara K, Hashimoto J, Ogawa K, et al. Simultaneous acquisition of iodine-123 emission and technetium-99m transmission data for quantitative brain single-photon emission tomographic imaging. Eur J Nucl Med 1998;25:1537–44.

    Article  PubMed  CAS  Google Scholar 

  14. Nohara R. Lipid metabolism in the heart-contribution of BMIPP to the diseased heart. Ann Nucl Med 2001;15:403–9.

    Article  PubMed  CAS  Google Scholar 

  15. Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Scatter correction in scintigraphy: the state of art. Eur J Nucl Med 1994;21:675–94.

    Article  PubMed  CAS  Google Scholar 

  16. Tsui BM, Frey EC, LaCroix KJ, et al. Quantitative myocardial perfusion SPECT. J Nucl Cardiol 1998;5:507–22.

    Article  PubMed  CAS  Google Scholar 

  17. Iida H, Narita Y, Kado H, et al. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 1998;39:181–9.

    PubMed  CAS  Google Scholar 

  18. Hashimoto J, Sasaki T, Ogawa K, et al. Effects of scatter and attenuation correction on quantitative analysis of -CIT brain SPET. Nucl Med Commun 1999;20:159–65.

    Article  PubMed  CAS  Google Scholar 

  19. Saito K, Takeda K, Okamoto S, et al. Detection of doxorubicin cardiotoxicity by using iodine-123 BMIPP early dynamic SPECT: quantitative evaluation of early abnormality of fatty acid metabolism with the Rutland method. J Nucl Cardiol 2000;7:553–61.

    Article  PubMed  CAS  Google Scholar 

  20. Kim Y, Sawada Y, Fujiwara G, Chiba H, Nishimura T. Therapeutic effect of co-enzyme Q10 on idiopathic dilated cardiomyopathy: assessment by iodine-123 labelled 15-(p-iodophenyl)-3(R,S)- methylpentadecanoic acid myocardial single-photon emission tomography. Eur J Nucl Med 1997;24:629–34.

    PubMed  CAS  Google Scholar 

  21. Takeda K, Saito K, Makino K, et al. Iodine-123-BMIPP myocardial washout and cardiac work during exercise in normal and ischemic hearts. J Nucl Med 1997;38:559–63.

    PubMed  CAS  Google Scholar 

  22. Yang JT, Yamamoto K, Sadato N, et al. Clinical value of triple-energy window scatter correction in simultaneous dualisotope single-photon emission tomography with 123I-BMIPP and 201Tl. Eur J Nucl Med 1997;24:1099–106.

    PubMed  CAS  Google Scholar 

  23. Narita Y, Iida H, Eberl S, Nakamura T. Monte Carlo evaluation of accuracy and noise properties of two scatter correction methods for 201Tl cardiac SPECT. IEEE Trans Nucl Sci 1997;44:2465–72.

    Article  CAS  Google Scholar 

  24. Narita Y, Iida H. Scatter correction in myocardial thallium SPECT: needs for optimization of energy window settings in the energy window-based scatter correction techniques [in Japanese]. Kaku Igaku 1999;36:83–90.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, Y., Shirouzu, I., Machida, T. et al. Collimator choice in cardiac SPECT with I-123-labeled tracers. J Nucl Cardiol 11, 433–439 (2004). https://doi.org/10.1016/j.nuclcard.2004.04.009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2004.04.009

Key Words

Navigation