Log in

Synthesis and neuromodulatory effects of TRH-related peptides: inhibitory activity on catecholamine release in vitro

  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

A detailed comprehension of central mechanisms underlying feeding behavior holds considerable promise for the treatment of alimentary disorders.

Methods

In order to elucidate the tight interrelationships occurring at the hypothalamic neuronal endings between aminergic neuro-transmitters and co-localized appetite modulators, we initially studied the effects of two anorexigenic peptides structurally related to thyrotropin-releasing hormone (TRH, 1), namely cyclo(His-Pro) (CHP, 2) and pGlu-His-Gly-OH (3), on [3H]-norepinephrine and [3H]-dopamine release from perfused rat hypothalamic synaptosomes. Furthermore, a number of TRH and CHP analogues were synthesized and tested for their ability to influence neurotransmitter release in the selected neuronal model.

Results

Peptide 3 showed only a slight inhibitory activity on norepinephrine release, whereas no effect was observed for compound 2. TRH analogue 8, metabolically stabilized by the replacement of pyroglutamate with the pyrohomocysteic acid (pHcs), was found to be inactive. Conversely, a significant inhibitory effect on dopamine and norepinephrine release was observed for the CHP-related diketopiperazines cyclo(Leu-Pro) (11) and cyclo(His-Gly) (14).

Conclusions

These results suggest a potential role for cyclo-dipeptides 11 and 14 in the hypothalamic modulation of appetite suppressant circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AcOH:

acetic acid

Boc:

tert-butoxycarbonyl

DBU:

1,8-diazabicyclo[5.4.0.]undec-7-ene

DCC:

dicyclo-hexylcarbodiimide

DCM:

dichloromethane

DMF:

N,N-dimethylformamide

AcOEt:

ethyl acetate

Fmoc:

9-fluo-renylmethoxycarbonyl

MeOH:

methanol

NMM:

N-methyl-morpholine

OSu:

N-hydroxysuccinimide derivative

TEA:

triethylamine

TFA:

trifluoroacetic acid

THF:

tetrahydrofuran

Z:

benzyloxycarbonyl

References

  1. Bauce LG, Goren HJ: Synthesis of a series of residue 1 (pyroglutamic acid) analogs of thyrotrophin releasing hormone. Int J Pept Protein Res, 1979, 14, 216–226.

    Article  CAS  Google Scholar 

  2. Brunetti L, Cacciatore I, Di Stefano A, Duprè S, Giorgi A, Luisi G, Michelotto B et al.: Synthesis and biological evaluation of a novel pyroglutamyl-modified TRH analogue. Farmaco, 2002, 57, 479–486.

    Article  CAS  Google Scholar 

  3. Brunetti L, Di Nisio C, Orlando G, Ferrante C, Vacca M: The regulation of feeding: a cross talk between peripheral and central signaling. Int J Immunopathol Pharmacol, 2005, 18, 201–212.

    Article  CAS  Google Scholar 

  4. Brunetti L, Michelotto B, Orlando G, Vacca M: Leptin inhibits norepinephrine and dopamine release from rat hypothalamic neuronal endings. Eur J Pharmacol, 1999, 372, 237–240.

    Article  CAS  Google Scholar 

  5. Brunetti L, Orlando G, Ferrante C, Chiavaroli A, Vacca M: Peptide YY (3–36) inhibits dopamine and norepinephrine release in the hypothalamus. Eur J Pharmacol, 2005, 519, 48–51.

    Article  CAS  Google Scholar 

  6. Brunetti L, Orlando G, Michelotto B, Recinella L, Vacca M: Cocaine- and amphetamine-regulated transcript peptide-(55–102) and thyrotropin releasing hormone inhibit hypothalamic dopamine release. Eur J Pharmacol, 2000, 409, 103–107.

    Article  CAS  Google Scholar 

  7. Brunetti L, Orlando G, Recinella L, Michelotto B, Ferrante C, Vacca M: Resistin, but not adiponectin, inhibits dopamine and norepinephrine release in the hypothalamus. Eur J Pharmacol, 2004, 493, 41–44.

    Article  CAS  Google Scholar 

  8. Calcagni A, Lucente G, Luisi G, Pinnen F, Rossi D: Novel glutathione analogues containing the dithiol and disulfide form of the Cys-Cys dyad. Amino Acids, 1999, 17, 257–265.

    Article  CAS  Google Scholar 

  9. Carpino LA, Ionescu D, El-Faham A: Peptide coupling in the presence of highly hindered tertiary amines. J Org Chem, 1996, 61, 2460–2465.

    Article  CAS  Google Scholar 

  10. Cummins PM, O’Connor B: Pyroglutamyl peptidase: an overview of the three known enzymatic forms. Biochim Biophys Acta, 1998, 1429, 1–17.

    Article  CAS  Google Scholar 

  11. Dietrich MO, HorvathTL: Feeding signals and brain circuitry. Eur J Neurosci, 2009, 30, 1688–1696.

    Article  Google Scholar 

  12. Dutta AS, Morley JS: Polypeptides. Part XIII. Preparation of α-amino-acid (carbazic acid) derivatives and intermediates for the preparation of α-aza-peptides. J Chem Soc Perkin 1, 1975, 17, 1712–1720.

    Article  Google Scholar 

  13. Faden AI, Fox GB, Fan L, Araldi GL, Qiao L, Wang S, Kozikowski AP: Novel TRH analog improves motor and cognitive recovery after traumatic brain injury in rodents. Am J Physiol, 1999, 277, R1196–1204.

    CAS  PubMed  Google Scholar 

  14. Fukuchi I, Asahi T, Kawashima K, Kawashima Y, Yamamura M, Matsuoka Y, Kinoshita K: Effects of taltirelin hydrate (TA-0910), a novel thyrotropin-releasing hormone analog, on in vivo dopamine release and turnover in rat brain. Arzneimittelforschung, 1998, 48, 353–359.

    CAS  PubMed  Google Scholar 

  15. Gillard ER, Dang DQ, Stanley BG: Evidence that neuropeptide Y and dopamine in the perifornical hypothalamus interact antagonistically in the control of food intake. Brain Res, 1993, 628, 128–136.

    Article  CAS  Google Scholar 

  16. Heuer H, Schäfer MK, Bauer K: The thyrotropin-releasing hormone-degrading ectoenzyme: the third element of the thyrotropin-releasing hormone-signaling system. Thyroid, 1998, 8, 915–920.

    Article  CAS  Google Scholar 

  17. Horita A: An update on the CNS actions of TRH and its analogs. Life Sci, 1998, 62, 1443–1448.

    Article  CAS  Google Scholar 

  18. Jaworek J, Schally AV, Coy DH, Colaluca J: Effects of analogs of (pyro)Glu-His-Gly-OH on food consumption and gastric acid secretion in rats. Life Sci, 1984, 34, 2597–2603.

    Article  CAS  Google Scholar 

  19. Jikihara H, Ikegami H, Koike K, Wada K, Morishige K, Kurachi H, Hirota K et al.: Intraventricular administration of histidyl-proline-diketopiperazine [cyclo(His-Pro)] suppresses prolactin secretion and synthesis: a possible role of cyclo(His-Pro) as dopamine uptake blocker in rat hypothalamus. Endocrinology, 1993, 132, 953–958.

    Article  CAS  Google Scholar 

  20. Kaur N, Monga V, Lu X, Gershengorn MC, Jain R: Modifications of the pyroglutamic acid and histidine residues in thyrotropin-releasing hormone (TRH) yield analogs with selectivity for TRH receptor type 2 over type 1. Bioorg Med Chem, 2007, 15, 433–443.

    Article  CAS  Google Scholar 

  21. Kelly JA, Scalabrino GA, Slator GR, Cullen AA, Gilmer JF, Lloyd DG, Bennett GW et al.: Structure-activity studies with high-affinity inhibitors of pyroglutamyl-peptidase II. Biochem J, 2005, 389, 569–576.

    Article  CAS  Google Scholar 

  22. Kow LM, Pfaff DW: Neuropeptides TRH and cyclo(His-Pro) share neuromodulatory, but not stimulatory, action on hypothalamic neurons in vitro: implication for the regulation of feeding. Exp Brain Res, 1987, 67, 93–99.

    Article  CAS  Google Scholar 

  23. Lenard NR, Berthoud HR: Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity, 2008, 16, S11–22.

    Article  CAS  Google Scholar 

  24. Luisi G, Pinnen F: Synthesis and properties of (S)-isothiazolidine-1,1-dioxide-3-carboxylic acid, anew y-sultam analogue of pyroglutamic acid. Arch Pharm, 1993, 326, 139–141.

    Article  CAS  Google Scholar 

  25. Matsui K, Wada K, Kwak S: Ataxia-ameliorating effects of YM-14673, a potent analog of thyrotropin releasing hormone, in ataxic mutant mice. Eur J Pharmacol, 1994, 254, 295–297.

    Article  CAS  Google Scholar 

  26. Morley JE, Levine AS, Prasad C: Histidyl-proline dike-topiperazine decreased food intake in rats. Brain Res, 1981, 210, 475–478.

    Article  CAS  Google Scholar 

  27. O’Dowd BF, Lee DK, Huang W, Nguyen T, Cheng R, Liu Y, Wang B et al.: TRH-R2 exhibits similar binding and acute signaling but distinct regulation and anatomic distribution compared with TRH-R1. Mol Endocrinol, 2000, 14, 183–193.

    Article  Google Scholar 

  28. Pfleger KD, Kroeger KM, Eidne KA: Receptors for hypothalamic releasing hormones TRH and GnRH: oligo-merization and interactions with intracellular proteins. Semin Cell Dev Biol, 2004, 15, 269–280.

    Article  CAS  Google Scholar 

  29. Prasad C: Bioactive cyclic dipeptides. Peptides, 1995, 16, 151–164.

    Article  CAS  Google Scholar 

  30. Prokai L, Zharikova AD: Neuropharmacodynamic evaluation of the centrally active thyrotropin-releasing hormone analogue [Leu2]TRH and its chemical braintargeting system. Brain Res, 2002, 952, 268–274.

    Article  CAS  Google Scholar 

  31. Reichelt KL, Foss I, Trygstad O, Edminson PD, Johansen JH, Bøler JB: Humoral control of appetite-II. Purification and characterization of an anorexogenic peptide from human urine. Neuroscience, 1978, 3, 1207–1211.

    Article  CAS  Google Scholar 

  32. Reichelt WH, Iversen JGH, Paulsen JE, Elgjo K, Reichelt KL: Pyroglutamyl-histidyl-glycine, the endogenous colon mitosis inhibitor, regulates cyclic AMP level in non-tumorigenic colonic epithelial cells. Anticancer Res, 2004, 24, 1465–1468.

    CAS  PubMed  Google Scholar 

  33. Schuhler S, Warner A, Finney N, Bennett GW, Ebling FJ, Brameld JM: Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters. J Neuro-endocrinol, 2007, 19, 239–249.

    CAS  Google Scholar 

  34. Shiraishi T: Noradrenergic neurons modulate lateral hypothalamic chemical and electrical stimulation-induced feeding by sated rats. Brain Res Bull, 1991, 27, 347–351.

    Article  CAS  Google Scholar 

  35. Simpson KA, Martin NM, Bloom SR: Hypothalamic regulation of food intake and clinical therapeutic applications. Arq Bras Endocrinol Metabol, 2009, 53, 120–128.

    Article  Google Scholar 

  36. Skaric V, Makarevic J, Skaric D: Polyfunctional lysine containing tri- and tetra-peptides. Croat Chem Acta, 1981, 54, 233–240.

    CAS  Google Scholar 

  37. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK et al.: Measurement of protein using bicinchoninic acid. Anal Biochem, 1985, 150, 76–85.

    Article  CAS  Google Scholar 

  38. Szirtes T, Kisfaludy L, Pálosi E, Szporny L: Synthesis of thyrotropin-releasing hormone analogues. 1. Complete dissociation of central nervous system effects from thyrotropin-releasing activity. J Med Chem, 1984, 27, 741–745.

    Article  CAS  Google Scholar 

  39. Wellman PJ, Davies BT, Morien A, McMahon L: Modulation of feeding by hypothalamic paraventricular nucleus α1- and α2-adrenergic receptors. Life Sci, 1993, 53, 669–679.

    Article  CAS  Google Scholar 

  40. Yarbrough GG: Fundamental molecular mechanisms of the CNS effects of TRH. Trends Pharmacol Sci, 2003, 24, 617–618.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Vacca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunetti, L., Chiavaroli, A., Cocco, A. et al. Synthesis and neuromodulatory effects of TRH-related peptides: inhibitory activity on catecholamine release in vitro. Pharmacol. Rep 65, 823–835 (2013). https://doi.org/10.1016/S1734-1140(13)71063-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(13)71063-6

Key words

Navigation