Log in

Attenuation of stress-induced behavioral deficits by lithium administration via serotonin metabolism

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Although the mood stabilizing role of lithium is well established and the cognitive effects of lithium are also best demonstrated, but its primary effect on neurochemical profile and behaviors under stress remain ambiguous. Earlier studies have suggested that a single exposure to 2 h immobilization stress alters memory in various memory tasks, decreases exploratory activity in open field test and increases serotonin metabolism. This study is designed to investigate the stress relieving effect of lithium in rats.

Methods

Rats were orally administered with lithium carbonate (1 mg/kg/ml) while controls received an equal volume of water for 21 days. After 21 days, each group of rats was sub-divided into stressed and unstressed groups. Animals of stressed group received immobilization stress for 2 h and 24 h following stress behavioral analysis was performed, after which animals were decapitated and their brain samples were collected for neurochemical estimation by HPLC-EC.

Results

Results of the present study show that 2 h immobilization stress decreases locomotor activity while impairs memory performance. Prior administration of lithium attenuates memory impairment and locomotion suppressant effects of stress by reversing the stress induced brain serotonin metabolism in lithium treated rats.

Conclusion

Thus, the results of this study suggest that lithium may recover behavioral and neurochemical impairments induced by stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat J, Sparks PD, Matus AP, Griggs J, Watkins LR, Maier SF: The role of habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res, 2001, 917, 118–126.

    Article  CAS  PubMed  Google Scholar 

  2. Baker KB, Kim JJ: Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learn Mem, 2002, 9, 58–65.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhattacharya SK, Das Neeta, Sarkar MK: Inhibition of carrageenin-induced pedal oedema in rats by immobilization stress. Res Exp Med, 1987, 187, 303–313.

    Article  CAS  Google Scholar 

  4. Bearden CE, Thompson PM, Dutton RA, Frey BN, Peluso MA, Nicoletti M, Dierschke N: Three dimensional anatomy of hippocampal anatomy in unmedicated and lithium-treated patients with bipolar disorder. Neuropsychopharmacology, 2003, 33, 1229–1238.

    Article  CAS  Google Scholar 

  5. Camins A, Verdaguer E, Junyent F, Yeste-Velasco M, Pelegrí C, Vilaplana J, Pallás M: Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium. CNS Neurosci Ther, 2009, 15, 333–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chrousos GP, Gold PW: The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 1992, 267, 1244–1252.

    Article  CAS  PubMed  Google Scholar 

  7. El-Mallakh S: Lithum: Actions and Mechanisms. American Psychiatric Press, Washington, DC, 1996.

    Google Scholar 

  8. Ennaceur A, Delcour J: A new one trial test for neurobiological studies of memory in rats.1: Behavioral data. Behav Brain Res, 1988, 31, 47–59.

    Article  CAS  PubMed  Google Scholar 

  9. Gray P, Solomon J, Dumpy M, Carr F, Hession M: Effects of lithium on open field behavior in “stressed” and “un stressed” rats. Psychopharmacology, 1976, 48, 277–281.

    Article  CAS  PubMed  Google Scholar 

  10. Haider S, Khaliq S, Ahmed SP, Haleem DJ: Long term tryptophan administration enhances cognitive performance and increases 5HT metabolism in the hippocampus of female rats. Amino Acids, 2006, 31, 421–425.

    Article  CAS  PubMed  Google Scholar 

  11. Haleem DJ, Haider S. Food restriction decreases serotonin and it’s synthesis rate in hypothalamus. Neuroreport, 1996, 7, 1153–1156.

    Article  CAS  PubMed  Google Scholar 

  12. Haleem DJ, Kennett GA, Curzon G: Adaptation of female rats to stress: shift to female pattern by inhibition of corticosterone synthesis. Brain Res, 1988, 458, 339–347.

    Article  CAS  PubMed  Google Scholar 

  13. Haleem DJ, Naz H, Parveen T, Haider S, Ahmed SP, Khan NH, Haleem MA: Serotonin and serotonin 1-A receptors in the failure of ethanol-treated rats to adapt a repeated stress schedule. J Stud Alcohol, 2002, 63, 389–396.

    Article  PubMed  Google Scholar 

  14. Haleem DJ, Perveen T: Brain regional serotonin synthesis following adaptation to repeated restraint. Neuroreport, 1994, 5, 1785–1788.

    Article  CAS  PubMed  Google Scholar 

  15. Haleem DJ, SamadN, Parveen T, Haider S, Haleem MA: Role of serotonin 1A receptors in restraint induced behavioral deficits and adaptation to repeated restraintstress in rats. Int J Neurosci, 2007, 117, 243–257.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes JH, Gallagher P, Young AH: Effects of acute tryptophan depletion on cognitive function in euthymic bipolar patients. Eur Neuropsychopharmacol, 2002, 12, 123–128.

    Article  CAS  PubMed  Google Scholar 

  17. Karimfar MH, Tabrizian K, Azami K, Hosseini-Sharifabad A, Hoseini A, Pourghorban M, Aghsami M et al.: Time course effects of lithium administration on spatial memory acquisition and cholinergic marker expression in rats. DARU, 2009, 17, 113–123.

    CAS  Google Scholar 

  18. Kennett GA Dickinson SL, Curzon G: Central serotonergic responses and behavioral adaptation to repeated immobilization: the effect of the corticosterone synthesis inhibitor metyrapone. Eur J Pharmacol, 1985, 119, 143–152.

    Article  CAS  PubMed  Google Scholar 

  19. Kennett GA, Dourish CT, Curzon G: Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. Eur J Pharmacol, 1987, 134, 265–274.

    Article  CAS  PubMed  Google Scholar 

  20. Kennett GA, Stephen LD, Curzon G: Enhancement of some 5-HT depressant behavioral responses following repeated immobilization in rats. Brain Res, 1985, 330, 253–263.

    Article  CAS  PubMed  Google Scholar 

  21. Krahn DD, Gosnell BA, Levine AS, Morley JE: Behavioral effects of corticotropin-releasing factor: localization and characterization of central effects. Brain Res, 1988, 443, 63–69.

    Article  CAS  PubMed  Google Scholar 

  22. Lim KY, Yang JJ, Lee DS, Noh JS, Jung MW, Chung YK: Lithium attenuates stress-induced impairment of long-term potentiation induction. Neuroreport, 2005, 28, 1605–1608.

    Article  Google Scholar 

  23. Marmol F: Lithium: bipolar disorder and neurodegenerative diseases. Possible cellular mechanisms of the therapeutic effects of lithium. Prog Neuropsychopharmacol Biol Psychiatry, 2008, 32, 1761–1771.

    Article  CAS  PubMed  Google Scholar 

  24. Maroun M, Levin GR: Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J Neurosci, 2003, 23, 4406–4409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McQuillin A, Riziq M, Gurling HM: A microarray gene expression study of the molecular pharmacology of lithium carbonate on mouse brain mRNA to understand the neurobiology of mood stabilization and treatment of bipolar affective disorder. Pharmacogenet Genomics, 2007, 17, 605–617.

    Article  CAS  PubMed  Google Scholar 

  26. Millan MJ, Dekeyne A, Gobert A: Serotonin 5-HT2c receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology, 1998, 37, 953–955.

    Article  CAS  PubMed  Google Scholar 

  27. Miller JC, Jiménez P, Mathé AA: The international restraint stress influences AP-1 and CREB DNA-binding activity induced by chronic lithium treatment in the rat frontal cortex and hippocampus. Int J Neuropsychopharmacol, 2007, 10, 609–619.

    Article  CAS  PubMed  Google Scholar 

  28. Moa B, FengaN, Rennera K, Forsterb G: Restraint stress increases serotonin release in the central nucleus of the amygdala via activation of corticotropin-releasing factor receptors. Brain Res Bull, 2008, 76, 493–498.

    Article  CAS  Google Scholar 

  29. Moore GJ, Bebchuk JM, Wilds IB, Chen G, Menji HK: Lithium-induced increase in human brain grey matter. Lancet, 2000, 356, 1241–1242.

    Article  CAS  PubMed  Google Scholar 

  30. Mushtaq F, Haider S, Perveen T, Haleem DJ: Lack of restraint-induced increases of brain serotonin metabolism in rats treated with spiperone: relationship with restraint-induced behavioral deficits. Pak J Pharm Sci, 2004, 17, 57–65.

    CAS  PubMed  Google Scholar 

  31. Naughten M, Mulrooney JB, Leonard BE: A role of the serotonin receptors in psychiatric disorders. Hum Psychopharmacol, 2000, 15, 397–415.

    Article  Google Scholar 

  32. Paré WP, Glavin GB: Reviews restraint stress in biomedical research. Neurosci Biobehav Rev, 1986, 10, 339–370.

    Article  PubMed  Google Scholar 

  33. Perez-Cruet J, Taqliamonte A, Taqliamonte P, Gessa GL: Stimulation of serotonin synthesis by lithium. J Pharmacol Exp Ther, 1971, 178, 325–330.

    CAS  PubMed  Google Scholar 

  34. Pessia M, Jiang ZG, Alan RA, Johnson SW: Actions of 5-hydroxytryptamine on ventral tegmental area neurons of the rat in vitro. Brain Res, 1994, 654, 324–330.

    Article  CAS  PubMed  Google Scholar 

  35. Porter RJ, Lunn BS, O’Brien JT: Effects of acute tryptophan depletion on cognitive function in Alzheimer’s disease and in the healthy elderly. Psychol Med, 2003, 33, 41–49.

    Article  CAS  PubMed  Google Scholar 

  36. Post RM: Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry, 1992, 149, 999–1010.

    Article  CAS  PubMed  Google Scholar 

  37. Quiroz JA, Gould TD, Manji HK: Molecular effects of lithium. Mol Interv, 2004, 4, 259–272.

    Article  CAS  PubMed  Google Scholar 

  38. Samad N, Parveen T, Haider S, Haleem DJ: Effect of repeated injection of Neem leaf extract and restraint stress on model of anxiety and brain serotonin metabolism in rats. Hamdard Medicus, 2002, 45, 54–58.

    Google Scholar 

  39. Samad N, Perveen T, Haider S, Haleem MA, Haleem DJ: Inhibition of restraint-induced neuroendocrine and serotonergic responses by buspirone in rats. Pharmacol Rep, 2006, 58, 636–642.

    CAS  PubMed  Google Scholar 

  40. Serretti A, Lilli R, Mandelli R, Lorenzi C, Smelardi E: Serotonin transporter gene is associated with lithium prophylaxis in mood disorder. Pharmacogenomics J, 2001, 1, 71–77.

    Article  CAS  PubMed  Google Scholar 

  41. Sheard MH, Aghajanian GK: Neuronally activated metabolism brain serotonin: Effect of lithium. Life Sci, 1970, 9, 285–290.

    Article  CAS  PubMed  Google Scholar 

  42. Silva R, Mesquita AR, Bessa J, Sousa JC, Sotiropoulos I, Leăo P, Almeida OF, Sousa N: Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3β. Neuroscience, 2008, 152, 656–669.

    Article  CAS  PubMed  Google Scholar 

  43. Treiser SL, Cascio CS, O’Donohue TL, ThoaNB, Jacobowitz DM, Kellar KJ: Lithium increases serotonin release and decreases serotonin receptors in the hippocampus. Science, 2010, 1307, 14–21.

    Google Scholar 

  44. Tsaltasa E, Kontis D, Boulougouris V, Papakostaa VM, Giannou H, Poulopoulou C, Soldatos C: Enhancing effects of chronic lithium on memory in the rat. Behav Brain Res, 2007, 177, 51–60.

    Article  CAS  Google Scholar 

  45. Tsaltas E, Kontis D, Boulougouris V, Papadimitriou GN: Lithium and cognitive enhancement: leave it or take it? Psychopharmacology (Berl), 2009, 202, 457–476.

    Article  CAS  Google Scholar 

  46. Vasconcellos APS, Tabajara AS, Ferrari C, Rucha E, Dalmaz C: Effect of chronic stress on spatial memory in rats is attenuated by lithium treatment. Physiol Behav, 2003, 79, 143–149.

    Article  CAS  PubMed  Google Scholar 

  47. Villegier AS, Salomon L, Blanc G, Godeheu G, Glowinski J, Tassin JP: Irreversible blockade of monoamine oxidases reveals the critical role of 5-HT transmission in locomotor response induced by nicotinein mice. Eur JNeurosci, 2006, 24, 1359–1365.

    Article  Google Scholar 

  48. Wada A, Yokoo H, Yanagita T, Kobayashi H: Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. J Pharmacol Sci, 2005, 99, 307–321.

    Article  CAS  PubMed  Google Scholar 

  49. Wada AJ: Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3β, β-catenin, and neurotrophin cascades. J Pharmacol Sci, 2009, 110, 14–28.

    Article  CAS  PubMed  Google Scholar 

  50. Wong ML, Licinio J: Research and treatment approaches to depression. Nat Rev Neurosci, 2001, 2, 343–351.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahira Perveen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perveen, T., Haider, S., Mumtaz, W. et al. Attenuation of stress-induced behavioral deficits by lithium administration via serotonin metabolism. Pharmacol. Rep 65, 336–342 (2013). https://doi.org/10.1016/S1734-1140(13)71008-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(13)71008-9

Key words

Navigation