Log in

Inhibitory effect of antidepressants on B16F10 melanoma tumor growth

  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Antidepressant drugs, like fluoxetine, a selective serotonin reuptake inhibitor, desipramine, a nonselective noradrenaline reuptake inhibitor, and mirtazapine, an antagonist of noradrenaline α2 auto- and heteroreceptors, are widely used for the treatment of depressive symptoms in cancer patients. Since these antidepressants have different activities targeting the immune system, they might also modulate tumor growth in cancer patients.

Methods

In the present study, we investigated the effects of administration of antidepressant drugs: fluoxetine, desipramine and mirtazapine on B16F10 melanoma tumor growth. These drugs were administered intraperitoneally (ip) for 17 days after subcutaneous injection of B16F10 melanoma cells to male C57BL/6J mice

Results

Fluoxetine significantly inhibited melanoma solid tumor growth and desipramine tended to decrease this parameter whereas mirtazapine had no effect.

Conclusion

The inhibitory effect of fluoxetine on melanoma growth was associated with an increased mitogen-induced T cell proliferation which may at least partly participate in the mechanism of the antitumor effect of this antidepressant. It appears that the inhibitory effect of fluoxetine on tumor growth is not related with changes in cytokine levels except for IL-10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul M, Logothetis CJ, Hoosein NM: Growth-inhibitory effects of serotonin uptake inhibitors on human prostate carcinoma cell lines. J Urol, 1995, 154, 247–250.

    Article  CAS  Google Scholar 

  2. Arimochi H, Morita K: Characterization of cytotoxic actions of tricyclic antidepressants on human HT29 colon carcinoma cells. Eur J Pharmacol, 2006, 541, 17–23.

    Article  CAS  Google Scholar 

  3. Bendele RA, Adams ER, Hoffman WP, Gries CL, Morton DM: Carcinogenicity studies of fluoxetine hydrochloride in rats and mice. Cancer Res, 1992, 52, 6931–6935.

    CAS  PubMed  Google Scholar 

  4. Bilir A, Erguven M, Oktem G, Ozdemir A, Uslu A, Aktas E, Bonavida B: Potentiation of cytotoxicity by combination of imatinib and chlorimipramine in glioma. Int J Oncol, 2008, 32, 829–839.

    CAS  PubMed  Google Scholar 

  5. Brunda MJ, Wright RB, Luistro L, Harbison ML, Anderson TD, McIntyre KW: Enhanced antitumor efficacy in mice by combination treatment with interleukin-1 alpha and interferon-alpha. J Immunother Emphasis Tumor Immunol, 1994, 15, 233–241.

    Article  CAS  Google Scholar 

  6. Bymaster FP, Zhang W, Carter PA, Shaw J, Chernet E, Phebus L, Wong DT, Perry KW: Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology (Berl), 2002, 160, 353–361.

    Article  CAS  Google Scholar 

  7. Chlebda E, Merwid-Ląd A, Szumny D, Trocha M, Fereniec-Gołębiewska L, Gębarowska E, Kowalski P, Szeląg A: Antitumor effect of macrolides - erythromycin and roxithromycin in B16 melanoma-transplanted mice. Pharmacol Rep, 2007, 59, 269–274.

    Google Scholar 

  8. De Galdeano AG, Boyano D, Cañavate L: Effect induced by interleukin-1 on the behaviour of B16F10 melanoma cells. Oncol Rep, 1999, 6, 225–228.

    PubMed  Google Scholar 

  9. Fisch M: Treatment of depression in cancer. J Natl Cancer Inst Monogr, 2004, 32, 105–111.

    Article  Google Scholar 

  10. Frick LR, Palumbo ML, Zappia MP, Brocco MA, Cremaschi GA, Genaro AM: Inhibitory effect of fluoxetine on lymphoma growth through the modulation of antitumor T-cell response by serotonin-dependent and independent mechanisms. Biochem Pharmacol, 2008, 75, 1817–1826.

    Article  CAS  Google Scholar 

  11. García-Hernández ML, Hernández-Pando R, Gariglio P, Berumen J: Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation. Immunology, 2002, 105, 231–243.

    Article  Google Scholar 

  12. Gil-Ad I, Zolokov A, Lomnitski L, Taler M, Bar M, Luria D, Ram E, Weizman A: Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int J Oncol, 2008, 33, 277–286.

    CAS  PubMed  Google Scholar 

  13. Greene J, Banasr M, Lee B, Warner-Schmidt J, Duman RS: Vascular endothelial growth factor signaling is required for the behavioral actions of antidepressant treatment: pharmacological and cellular characterization. Neuropsychopharmacology, 2009, 34, 2459–2468.

    Article  CAS  Google Scholar 

  14. Han YS, Lee CS: Antidepressants reveal differential effect against 1 -methyl-4-phenylpyridinium toxicity in differentiated PC12 cells. Eur J Pharmacol, 2009, 604, 36–44.

    Article  CAS  Google Scholar 

  15. Krishnan A, Hariharan R, Nair SA, Pillai MR: Fluoxetine mediates G0/G1 arrest by inducing functional inhibition of cyclin dependent kinase subunit (CKS)1. Biochem Pharmacol, 2008, 75, 1924–1934.

    Article  CAS  Google Scholar 

  16. Kubera M, Grygier B, Arteta B, Urbańska K, Basta-Kaim A, Budziszewska B, Leśkiewicz M et al.: Age-dependent stimulatory effect of desipramine and fluoxetine pretreatment on metastasis formation by B16F10 melanoma in male C57BL/6 mice. Pharmacol Rep, 2009, 61, 1113–1126.

    Article  CAS  Google Scholar 

  17. Kubera M, Grygier B, Urbańska K, Arteta B, Leśkiewicz M, Basta-Kaim A, Budziszewska B et al.: Inhibitory effect of fluoxetine on S91 melanoma growth in DBA mice. Cent Eur J Immun, 2008, 33, Suppl 1, 40.

    Google Scholar 

  18. Kubera M, Holan V, Mathison R, Maes M: The effect of repeated amitriptyline and desipramine administration on cytokine release in C57BL/6 mice. Psychoneuroendocrinology, 2000, 25, 785–797.

    Article  CAS  Google Scholar 

  19. Kubera M, Simbirtsev A, Mathison R, Maes M: Effects of repeated fluoxetine and Citalopram administration on cytokine release in C57BL/6 mice. Psychiatry Res, 2000, 96, 255–266.

    Article  CAS  Google Scholar 

  20. Levkovitz Y, Gil-Ad I, Zeldich E, Dayag M, Weizman A: Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J Mol Neuro-sci, 2005, 27, 29–42.

    Article  CAS  Google Scholar 

  21. Lieb J: Antidepressants, eicosanoids and the prevention and treatment of cancer. A review. Prostaglandins Leukot Essent Fatty Acids, 2001, 65, 233–239.

    Article  CAS  Google Scholar 

  22. Lieb J: Antidepressants, prostaglandins and the prevention and treatment of cancer. A review. Med Hypotheses, 2007, 69, 684–689.

    Article  CAS  Google Scholar 

  23. Lloyd-Williams M, Shiels C, Taylor F, Dennis M: Depression-an independent predictor of early death in patients with advanced cancer. J Affect Disord, 2009, 113, 127–132.

    Article  Google Scholar 

  24. Luo F, Yee JK, Huang SH, Wu LT, Jong AY: Downregulation of human Cdc6 protein using a lentivirus RNA interference expression vector. Methods Mol Biol, 2006, 342, 287–293.

    CAS  PubMed  Google Scholar 

  25. Massie MJ: Prevalence of depression in patients with cancer. J Natl Cancer Inst Monogr, 2004, 32, 57–71.

    Article  Google Scholar 

  26. Miknyoczki SJ, Lang D, Huang L, Klein-Szanto AJ, Dionne CA, Ruggeri BA: Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int J Cancer, 1999, 81, 417–427.

    Article  CAS  Google Scholar 

  27. Milijkovic D, Markovic M, Bogdanovic N, Mostarica Stojkovic M, Trajkovic D: Necrotic tumor cells oppositely affect nitric oxide production in tumor cell lines and macrophages. Cell Immunol, 2002, 215, 72–77.

    Article  Google Scholar 

  28. Nagai H, Hara I, Horikawa T, Oka M, Kamidono S, Ichi-hashi M: Gene transfer of secreted-type modified interleukin-18 gene to B16F10 melanoma cells suppresses in vivo tumor growth through inhibition of tumor vessel formation. J Invest Dermatol, 2002, 119, 541–548.

    Article  CAS  Google Scholar 

  29. Ng CG, Boks MP, Zainal NZ, de Wit NJ: The prevalence and pharmacotherapy of depression in cancer patients. J Affect Disord, 2011, 131, 1–7.

    Article  CAS  Google Scholar 

  30. Rodin G, Katz M, Lloyd N, Green E, Mackay JA, Wong RK: Treatment of depression in cancer patients. Curr Oncol, 2007, 14, 180–188.

    Article  CAS  Google Scholar 

  31. Serafeim A, Holder MJ, Grafton G, Chamba A, Drayson MT, Luong QT, Bunce CM et al.: Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood, 2003, 101, 3212–3219.

    Article  CAS  Google Scholar 

  32. Soengas MS, Lowe SW: Apoptosis and melanoma chemoresistance. Oncogene, 2003, 22, 3138–3151.

    Article  CAS  Google Scholar 

  33. Spanová A, Kováru H, Lisá V, Lukásová E, Rittich B: Estimation of apoptosis in C6 glioma cells treated with antidepressants. Physiol Res, 1997, 46, 161–164.

    PubMed  Google Scholar 

  34. Spiegel D: Mind matters in cancer survival. Psychooncology, 2012, 21, 588–593.

    Article  Google Scholar 

  35. Steingart AB, Cotterchio M: Do antidepressants cause, promote, or inhibit cancers? A review. J Clin Epidemiol, 1995, 48, 1407–1412.

    Article  CAS  Google Scholar 

  36. Stepulak A, Rzeski W, Sifringer M, Brocke K, Gratopp A, Kupisz K, Turski L, Ikonomidou C: Fluoxetine inhibits the extracellular signal regulated kinase pathway and suppresses growth of cancer cells. Cancer Biol Ther, 2008, 7, 1685–1693.

    Article  CAS  Google Scholar 

  37. Sternbach H: Are antidepressants carcinogenic? Are-view of preclinical and clinical studies. J Clin Psychiatry, 2003, 64, 1153–1162.

    Article  CAS  Google Scholar 

  38. Tutton PJ, Barkla DH: Effect of an inhibitor of noradrenaline uptake, desipramine, on cell proliferation in the intestinal crypt epithelium. Virchows Arch B Cell Pathol Incl Mol Pathol, 1989, 57, 349–352.

    Article  CAS  Google Scholar 

  39. Warner-Schmidt JL, Duman RS. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci USA, 2007, 104, 4647–4652.

    Article  CAS  Google Scholar 

  40. Zhang W, Lu Y, Xu B, Wu J, Zhang L, Gao M, Zheng S et al.: Acidic mucopolysaccharide from holothuria leu-cospilota has antitumor effect by inhibiting angiogenesis and tumor cell invasion in vivo and in vitro. Cancer Biol Ther, 2009, 8, 1489–1499.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Kubera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grygier, B., Arteta, B., Kubera, M. et al. Inhibitory effect of antidepressants on B16F10 melanoma tumor growth. Pharmacol. Rep 65, 672–681 (2013). https://doi.org/10.1016/S1734-1140(13)71045-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1734-1140(13)71045-4

Key words

Navigation