Log in

Evolution of MnS inclusions in Ti-bearing X80 pipeline steel

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Studies show that manganese sulfide (MnS) inclusions in pipeline steel affect the lateral performance of steel in its rolling deformation, as well as the hydrogen-induced cracking and sulfide stress corrosion cracking resistance performance. To inhibit the precipitation of MnS and its effect on pipeline steel, a quenching experiment and a diffusion couple experiment, which investigated the evolution of MnS inclusions in Ti-bearing X80 pipeline steel, were conducted. The experimental results show that the transformation of the MnS inclusions during solidification is as follows: MnS→titanium sulfide (TiS)→Ti4C2S2. The transition temperatures of MnS to TiS and TiS to Ti4C2S2 are 1673 and 1273 K, respectively, and the overall size of the sulfide decreased as well. Thermodynamic calculation results confirm that the transition temperatures of MnS to TiS and TiS to Ti4C2S2 are 1623 and 1203 K, respectively. When the sulfur content in the X80 pipeline steel is 0.001 5%, all the sulfur in the steel can be converted into Ti4C2S2 with a titanium content of more than 0.02%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Takahashi, T. Hara, H. Ogawa, ISIJ Int. 36 (2007) 229–234.

    Article  Google Scholar 

  2. J. Sojka, M. Jérôme, M. Sozańska, P. Váňová, L. Rytírová, P. Jonšta, Mater. Sci. Eng. A 480 (2008) 237–243.

    Article  Google Scholar 

  3. E. Miyoshi, T. Tanaka, F. Terasaki, A. Ikeda, J. Eng. Indus. 98 (1976) 88–89.

    Article  Google Scholar 

  4. H. F. López, R. Raghunath, J. L. Albarran, L. Martinez, Metall. Mater. Trans. A 27 (1996) 3601–3611.

    Article  Google Scholar 

  5. G. Domizzi, G. Anteri, J. Ovejero-García, Corros. Sci. 43 (2001) 325–339.

    Article  Google Scholar 

  6. Q. Sha, D. Li, Mater. Sci. Eng. A 585 (2013) 214–221.

    Article  Google Scholar 

  7. M. T. Shehata, M. Elboujdaini, R. W. Revie, Nato Secur. Sci. 62 (2008) 115–129.

    Article  Google Scholar 

  8. J. Moon, S. J. Kim, C. Lee, Met. Mater. Int. 19 (2013) 45–48.

    Article  Google Scholar 

  9. J. F. Xu, F. Huang, X. Wang, J. Iron Steel Res. Int. 23 (2016) 784–791.

    Article  Google Scholar 

  10. W. Regone, A. M. Jorge, O. Balancin, Scripta Mater. 48 (2003) 773–778.

    Article  Google Scholar 

  11. E. J. Shin, B. S. Seong, Y. S. Han, K. P. Hong, C. H. Lee, H. J. Kang, J. Appl. Crystallogr. 36 (2003) 624–628.

    Article  Google Scholar 

  12. F. Jie, H. J. Wu, Y. C. Liu, Y. Kang, Sci. China. Ser. E 50 (2007) 166–176.

    Article  Google Scholar 

  13. C. I. Garcia, C. Torkaz, C. Graham, A. J. Deardo, Ironmak. Steelmak. 32 (2005) 314–318.

    Article  Google Scholar 

  14. Q. L. Yong, M. T. Ma, B. R. Wu, Microalloyed Steels—Physical and Mechanical Metallurgy, China Machine Press, Bei**g, 1989 (in Chinese).

  15. T. N. Baker, Y. Li, J. A. Wilson, A. J. Craven, D. N. Crowther, Mater. Sci. Technol. 20 (2004) 720–730.

    Article  Google Scholar 

  16. Y. Kang, H. Yu, J. Fu, K. Wang, Z. Wang, Mater. Sci. Eng. A 351 (2003) 265–271.

    Article  Google Scholar 

  17. K. Oikawa, H. Mitsui, K. Ishida, Mater. Sci. Forum 500–501 (2005) 711–718.

    Article  Google Scholar 

  18. B. Predel, S-Ti (Sulfur-Titanium), Springer, Berlin Heidelberg, 1998.

    Book  Google Scholar 

  19. P. Skarvelis, A. Rokanopoulou, G. D. Papadimitriou, Tribol. Int. 66 (2013) 44–48.

    Article  Google Scholar 

  20. C. J. Ball, Met. Sci. 18 (1984) 577–579.

    Article  Google Scholar 

  21. A. Bouhemadou, R. Khenata, Phys. Lett. A 372 (2009) 6448–6452.

    Article  Google Scholar 

  22. J. H. Swisher, Trans. Metall. Soc. AIME. 242 (1968) 2433–2439.

    Google Scholar 

  23. D. Alaoua, S. Lartigue, A. Larere, L. Priester, Mater. Sci. Eng. A 189 (1994) 155–163.

    Article  Google Scholar 

  24. K. A. Taylor, Scripta Metal. Mater. 32 (1994) 7–12.

    Article  Google Scholar 

  25. M. Hino, K. Ito, Thermodynamic Data for Steelmaking, 3rd ed., Tohoku University Press, Sendai, 2011.

    Google Scholar 

  26. L. Meyer, F. Heisterkamp, D. Lauterborn, Ferrous Committee of TMS-AIME, Society of Automotive Engineers, Warrendale, 1973, pp. 293–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-wei Ni Ph.D. or Cheng-song Liu Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Za., Ni, Hw., Zhang, H. et al. Evolution of MnS inclusions in Ti-bearing X80 pipeline steel. J. Iron Steel Res. Int. 24, 654–660 (2017). https://doi.org/10.1016/S1006-706X(17)30098-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30098-5

Key words

Navigation