Log in

Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To improve the hydrogen storage performance of PrMg12-type alloys, Ni was adopted to replace partially Mg in the alloys. The PrMg11Ni+x wt. % Ni (x = 100, 200) alloys were prepared via mechanical milling. The phase structures and morphology of the experimental alloys were investigated by X-ray diffraction and transmission electron microscopy. The results show that increasing milling time and Ni content accelerate the formation of nanocrystalline and amorphous structure. The gaseous hydrogen storage properties of the experimental alloys were determined by differential scanning calorimetry (DSC) and Sievert apparatus. In addition, increasing milling time makes the hydrogenation rates of the alloys augment firstly and decline subsequently and the dehydrogenation rate always increases. The maximum capacity is 5.572 wt. % for the x = 100 alloy and 5.829 wt. % for the x = 200 alloy, respectively. The enthalpy change (ΔH), entropy change (ΔS) and the dehydrogenation activation energy (\(E_{\rm{k}}^{{\rm{de}}}\)) markedly lower with increasing the milling time and the Ni content due to the generation of nanocrystalline and amorphous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Mori, K. Hirose, Int. J. Hydrogen Energy 34 (2009) 4569–4574.

    Article  Google Scholar 

  2. R. Lan, T. S. I. John, S. Tao, Int. J. Hydrogen Energy 37 (2012) 1482–1494.

    Article  Google Scholar 

  3. I. P. Jain, Int. J. Hydrogen Energy 34 (2009) 7368–7378.

    Article  Google Scholar 

  4. V. Bhat, A. Rougier, L. Aymard, G. A. Nazri, J. M. Tarascon, Int. J. Hydrogen Energy 32 (2007) 4900–4906.

    Article  Google Scholar 

  5. L. Schlapbach, A. Ziittel, Nature 414 (2001) 353–358.

    Article  Google Scholar 

  6. I. P. Jain, C. Lal, A. Jain, Int. J. Hydrogen Energy 35 (2010) 5133–5144.

    Article  Google Scholar 

  7. Y. F. Liu, H. G. Pan, M. X. Gao, Q. D. Wang, J. Mater. Chem. 21 (2011) 4743–4755.

    Article  Google Scholar 

  8. E. A. Lass, Int. J. Hydrogen Energy 36 (2011) 10787–10796.

    Article  Google Scholar 

  9. M. Y. Song, S. N. Kwon, H. R. Park, S. H. Hong, Int. J. Hydrogen Energy 36 (2011) 13587–13594.

    Article  Google Scholar 

  10. S. Kalinichenka, L. Röntzsch, T. Riedl, T. Weißgärber, B. Kieback, Int. J. Hydrogen Energy 36 (2011) 10808–10815.

    Article  Google Scholar 

  11. F. P. Luo, H. Wang, L. Z. Ouyang, M. Q. Zeng, J. W. Liu, M. Zhu, Int. J. Hydrogen Energy 38 (2013) 10912–10918.

    Article  Google Scholar 

  12. J. X. Zou, X. Q. Zeng, Y. J. Ying, X. Chen, H. Guo, S. Zhou, W. J. Ding, Int. J. Hydrogen Energy 38 (2013) 2337–2346.

    Article  Google Scholar 

  13. J. Huot, J. F. Pelletier, L. B. Lurio, M. Sutton, R. Schulz, J. Alloys Compd. 348 (2003) 319–324.

    Article  Google Scholar 

  14. C. X. Shang, M. Bououdina, Y. Song, Z. X. Guo, Int. J. Hydrogen Energy 29 (2004) 73–80.

    Article  Google Scholar 

  15. A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, C. Mickel, N. Mattern, J. Alloys Compd. 398 (2005) 156–164.

    Article  Google Scholar 

  16. T. Sadhasivam, M. S. L. Hudso, S. K. Pandey, A. Bhatnagar, M. K. Singh, K. Gurunathan, O. N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362.

    Article  Google Scholar 

  17. S. Kalinichenka, L. Röntzsch, T. Riedl, T. Gemming, T. Weißgärber, B. Kieback, Int. J. Hydrogen Energy 36 (2011) 1592–1600.

    Article  Google Scholar 

  18. T. Spassov, V. Rangelova, N. Neykov, J. Alloys Compd. 334 (2002) 219–223.

    Article  Google Scholar 

  19. A. Zaluska, L. Zaluski, J. O. Strom-Olsen, J. Alloys Compd. 289 (1999) 197–206.

    Article  Google Scholar 

  20. H. Gu, Y. Zhu, L. Li, Int. J. Hydrogen Energy 33 (2008) 2970–2974.

    Article  Google Scholar 

  21. A. A. Poletaev, R. V. Denys, J. P. Maehlen, J. K. Solberg, B. P. Tarasov, V. A. Yartys, Int. J. Hydrogen Energy 37 (2012) 3548–3557.

    Article  Google Scholar 

  22. Q. A. Zhang, C. J. Jiang, D. D. Liu, Int. J. Hydrogen Energy 37 (2012) 10709–10714.

    Article  Google Scholar 

  23. L. H. Kumar, B. Viswanathan, S. S. Murthy, J. Alloys Compd. 461 (2008) 72–76.

    Article  Google Scholar 

  24. R. A. Varin, T. Czujko, E. Wasmund, Z. S. Wronski, J. Alloys Compd. 432 (2007) 217–231.

    Article  Google Scholar 

  25. N. Hanada, T. Ichikawa, H. Fujji, J. Alloys Compd. 404–406 (2005) 716–719.

    Article  Google Scholar 

  26. M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percher-on-Guegan, H. Zarrouk, J. Alloys Compd. 356–357 (2003) 557–561.

    Article  Google Scholar 

  27. L. Z. Ouyang, J. M. Huang, C. J. Fang, Q. A. Zhang, D. L. Sun, M. Zhu, Int. J. Hydrogen Energy 37 (2012) 12358–12364.

    Article  Google Scholar 

  28. R. V. Denys, A. A. Poletaev, J. K. Solberg, B. P. Tarasov, V. A. Yartys, Acta Mater. 58 (2010) 2510–2519.

    Article  Google Scholar 

  29. H. Niu, D. O. Northwood, Int. J. Hydrogen Energy 27 (2002) 69–77.

    Article  Google Scholar 

  30. H. Falahati, D. P. J. Barz, Int. J. Hydrogen Energy 38 (2013) 8838–8851.

    Article  Google Scholar 

  31. M. Anik, F. Karanfil, N. K. Kdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.

    Article  Google Scholar 

  32. M. Pourabdoli, S. Raygan, H. Abdizadeh, D. Uner, Int. J. Hydrogen Energy 38 (2013) 11910–11919.

    Article  Google Scholar 

  33. T. Kimura, H. Miyaoka, T. Ichikawa, Y. Kojima, Int. J. Hydrogen Energy 38 (2013) 13728–13733.

    Article  Google Scholar 

  34. H. E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **-liang Gao Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Jl., Qi, Y., Li, Yq. et al. Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling. J. Iron Steel Res. Int. 24, 198–205 (2017). https://doi.org/10.1016/S1006-706X(17)30028-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30028-6

Key words

Navigation