Log in

Rate Dependent Stress-Stretch Relation of Dielectric Elastomers Subjected to Pure Shear Like Loading and Electric Field

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The performance of dielectric elastomer (DE) transducers is significantly affected by viscoelastic relaxation-induced electromechanical dissipations. This paper presents an experimental study to obtain the rate dependent stress-stretch relation of DE membranes (VHB™9473) subjected to pure shear like loading and electric loading simultaneously. Stretching rate dependent behavior is observed. The results also show that the tensile force decreases as the voltage increases. The observations are compared with predictions by a viscoelastic model of DE. This experiment may be used for further studies of dynamic electromechanical coupling properties of DEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirai, T., Nemoto, H., Hirai, M. and Hayashi, S., Electrostriction of highly swollen polymer gel: Possible application for gel actuator. Journal of Applied Polymer Science, 1994, 53(1): 79–84.

    Article  Google Scholar 

  2. Heydt, R., Kornbluh, R., Pelrine, R. and Mason, V., Design and performance of an electrostrictive-polymer-film acoustic actuator. Journal of Sound and Vibration, 1998, 215(2): 297–311.

    Article  Google Scholar 

  3. Pelrine, R.E., Kornbluh, R.D. and Joseph, J.P., Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical, 1998, 64(1): 77–85.

    Article  Google Scholar 

  4. Zanna, J.J., Nguyen, H.T., Parneix, J.P., Ruffie, G. and Mauzac, M., Dielectric properties of side chain liquid crystalline elastomers: influence of crosslinking on side chain dynamics. The European Physical Journal B—Condensed Matter and Complex Systems, 1999, 10(2): 345–351.

    Article  Google Scholar 

  5. Liang, C., Sun, F.P. and Rogers, C.A., Coupled electro-mechanical analysis of adaptive material systems — determination of the actuator power consumption and system energy transfer. Journal of Intelligent Material Systems and Structures, 1994, 5(1): 12–20.

    Article  Google Scholar 

  6. Pelrine, R., Kornbluh, R., Pei, Q. and Joseph, J., High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287(5454): 836–839.

    Article  Google Scholar 

  7. Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q. and Chiba, S., High-field deformation of elastomeric dielectrics for actuators. Materials Science and Engineering: C, 2000, 11(2): 89–100.

    Article  Google Scholar 

  8. Pelrine, R., Kornbluh, R. and Kofod, G., High-strain actuator materials based on dielectric elastomers. Advanced Materials, 2000, 12(16): 1223–1225.

    Article  Google Scholar 

  9. Wissler, M. and Mazza, E., Electromechanical coupling in dielectric elastomer actuators. Sensors and Actuators a-Physical, 2007, 138: 384–393.

    Article  Google Scholar 

  10. Moscardo, M., Zhao, X., Suo, Z. and Lapusta, Y., On designing dielectric elastomer actuators. Journal of Applied Physics, 2008, 104(9): 093503.

    Article  Google Scholar 

  11. O’Halloran, A., O’Malley, F. and McHugh, P., A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics, 2008, 104(7): 071101.

    Article  Google Scholar 

  12. Koh, S.J.A., Zhao, X. and Suo, Z., Maximal energy that can be converted by a dielectric elastomer generator. Applied Physics Letters, 2009, 94(26): 262902.

    Article  Google Scholar 

  13. Brochu, P. and Pei, Q., Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 2010, 31(1): 10–36.

    Article  Google Scholar 

  14. Koh, S.J.A., Li, T., Zhou, J., Zhao, X., Hong, W., Zhu, J. and Suo, Z., Mechanisms of large actuation strain in dielectric elastomers. Journal of Polymer Science Part B: Polymer Physics, 2011, 49(7): 504–515.

    Article  Google Scholar 

  15. Qiang, J.H., Chen, H.L. and Li, B., Experimental study on the dielectric properties of polyacrylate dielectric elastomer. Smart Materials and Structures, 2012, 21(2): 025006.

    Article  Google Scholar 

  16. Goulbourne, N., Mockensturm, E. and Frecker, M., A nonlinear model for dielectric elastomer membranes. Journal of Applied Mechanics, 2005, 72(6): 899–906.

    Article  Google Scholar 

  17. Dorfmann, A. and Ogden, R.W., Nonlinear electroelasticity. Acta Mechanica, 2005, 174(3): 167–183.

    Article  Google Scholar 

  18. Suo, Z., Zhao, X. and Greene, W.H., A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 467–486.

    Article  MathSciNet  Google Scholar 

  19. Trimarco, C., On the Lagrangian electrostatics of elastic solids. Acta Mechanica, 2009, 204(3): 193–201.

    Article  Google Scholar 

  20. Suo, Z., Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 2010, 23(6): 549–578.

    Article  Google Scholar 

  21. Plante, J.S. and Dubowsky, S., Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures, 2006, 43(25–26): 7727–7751.

    Article  Google Scholar 

  22. Foo, C.C., Cai, S., Koh, S.J.A., Bauer, S. and Suo, Z., Model of dissipative dielectric elastomers. Journal of Applied Physics, 2012, 111(3): 034102.

    Article  Google Scholar 

  23. Huang, J., Li, T., Foo, C.C., Zhu, J., Clarke, D.R. and Suo, Z., Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Applied Physics Letters, 2012, 100(4): 041911.

    Article  Google Scholar 

  24. Zhao, X.H., Koh, S.J.A. and Suo, Z.G., Nonequilibrium thermodynamics of dielectric elastomers. International Journal of Applied Mechanics, 2011, 3(2): 203–217.

    Article  Google Scholar 

  25. Where do the ‘Pure’ and ‘Shear’ Come From in the Pure Shear Test? In: Fatigue Life Simulation for Rubber. www.endurica.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxing Qu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 10832009), the Program for New Century Excellent Talents in University (NCET-08-0480), Zhejiang Provincial Natural Science Foundation of China (No. Z1110057), and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, S., Li, K., Li, T. et al. Rate Dependent Stress-Stretch Relation of Dielectric Elastomers Subjected to Pure Shear Like Loading and Electric Field. Acta Mech. Solida Sin. 25, 542–549 (2012). https://doi.org/10.1016/S0894-9166(12)60048-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(12)60048-2

Key words

Navigation