Log in

Enhancing refinery heavy oil fractions analytical performance through real-time predicative modeling

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This study introduces a suite of robust models aimed to advance the determination of physiochemical properties in heavy oil refinery fractions. By integrating real-time analytical technique inside the refinery analysis, we have developed a single analyzer capable of employing six partial least square regression equations. These designed models enable to provide real-time prediction of critical petroleum properties, such as sulfur content, micro carbon residues (MCR), asphaltene content, heating value, and the concentrations of nickel and vanadium metals. Specifically tailored for heavy oil in refinery feeds with an American petroleum institute (API) gravity range of 3° to 32° and sulfur content of 2.8 to 5.5 wt%, the models streamline the analysis process within refinery operations, bridging the gap between catalytic and non-catalytic processes across refinery units. The accuracy of our physiochemical prediction models has been validated against American Society for Testing and Materials (ASTM) standards, demonstrating their capability to deliver precise real-time property values. This approach not only enhances the efficiency of refinery analysis but also sets a new standard for the monitoring and optimization of heavy oil processing in real-time approach.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. F. Sánchez-Minero, G. Sánchez-Reyna, J. Ancheyta, G. Marroquin, Fuel (2014). https://doi.org/10.1016/j.fuel.2014.08.022

    Article  Google Scholar 

  2. O. Alomair, A. Elsharkawy, H. Alkandari, SPE (2011). https://doi.org/10.2118/150503-MS

    Article  Google Scholar 

  3. A. Hinkle, E.-J. Shin, M.W. Liberatore, A.M. Herring, M. Batzle, Fuel (2008). https://doi.org/10.1016/j.fuel.2008.04.018

    Article  Google Scholar 

  4. R. Kumar, S. Maheshwari, R.K. Voolapalli, S. Upadhyayula, J. Taiwan Inst. Chem. Eng. (2021). https://doi.org/10.1016/j.jtice.2021.03.012

    Article  Google Scholar 

  5. M.K. Moro, F.D. dos Santos, G.S. Folli, W. Romão, P.R. Filgueiras, Fuel (2021). https://doi.org/10.1016/j.fuel.2021.121283

    Article  Google Scholar 

  6. P. de Peinder, T. Visser, R. Wagemans, J. Blomberg, H. Chaabani, F. Soulimani, B.M. Weckhuysen, Energy Fuels (2010). https://doi.org/10.1021/ef900908p

    Article  Google Scholar 

  7. L. Riveros, B. Jaimes, M.A. Ranaudo, J. Castillo, J. Chirinos, Energy Fuels (2006). https://doi.org/10.1021/ef0501243

    Article  Google Scholar 

  8. Y. Lei, P. Yu, W. Ni, H. Peng, Y. Liu, X. Lv, H. Zhao, ACS Omega (2021). https://doi.org/10.1021/acsomega.0c05121

    Article  PubMed  PubMed Central  Google Scholar 

  9. E.F. Ghloum, A.M. Rashed, M.A. Safa, R.C. Sablit, S.M. Al-Jouhar, J. Petrol. Sci. Eng. (2019). https://doi.org/10.1016/j.petrol.2018.12.071

    Article  Google Scholar 

  10. K. Chen, Z. Wang, H. Liu, A. Guo, Fuel Process. Technol. (2012). https://doi.org/10.1016/j.fuproc.2012.02.004

    Article  Google Scholar 

  11. M.A. Khoshooei, S.M. Elahi, L. Carbognani, C.E. Scott, P. Pereira-Almao, Fuel (2021). https://doi.org/10.1016/j.fuel.2020.119664

    Article  Google Scholar 

  12. Y.S. Zhang, X. Lu, R.E. Owen, G. Manos, R. Xu, F.R. Wang, W.C. Maskell, P.R. Shearing, D.J. Brett, Appl. Catal. B (2020). https://doi.org/10.1016/j.apcatb.2019.118329

    Article  Google Scholar 

  13. J.S. Pereira, D.P. Moraes, F.G. Antes, L.O. Diehl, M.F. Santos, R.C. Guimarães, T.C. Fonseca, V.L. Dressler, É.M. Flores, Microchem. J. (2010). https://doi.org/10.1016/j.microc.2009.12.016

    Article  Google Scholar 

  14. A. Doyle, A. Saavedra, M.L.B. Tristao, R.Q. Aucelio, Fuel (2015). https://doi.org/10.1016/j.fuel.2015.08.072

    Article  Google Scholar 

  15. F.A. Dawodu, C.J. Abonyi, K.G. Akpomie, Appl Water Sci (2021). https://doi.org/10.1007/s13201-020-01335-8

    Article  Google Scholar 

  16. P.R. Filgueiras, C.M. Sad, A.R. Loureiro, M.F. Santos, E.V. Castro, J.C. Dias, R.J. Poppi, Fuel (2014). https://doi.org/10.1016/j.fuel.2013.07.122

    Article  Google Scholar 

  17. A. Demirbas, K. Al-Ghamdi, Pet. Sci. Technol. (2015). https://doi.org/10.1080/10916466.2015.1007384

    Article  Google Scholar 

  18. N.T. Nguyen, S. Park, J. Jung, J. Cho, C.W. Lee, Y.-K. Park, J. Ind. Eng. Chem. (2018). https://doi.org/10.1016/j.jiec.2017.11.044

    Article  Google Scholar 

  19. C.A. Teixeira, A.M. de Oliveira, I.M. Junior, L.W. Hantao, Fuel (2024). https://doi.org/10.1016/j.fuel.2023.130156

    Article  Google Scholar 

  20. E. Marguí, M. Resano, I. Queralt, Spectrochim. Acta, Part B (2019). https://doi.org/10.1016/j.sab.2019.04.003

    Article  Google Scholar 

  21. A. Muhammad, R.B. de Vasconcellos Azeredo, Fuel (2014). https://doi.org/10.1016/j.fuel.2014.04.026

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the effort of Emad A. Alawi from R&DC for petroleum analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Al-Shafei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shafei, E., Aljishi, A., Albahar, M. et al. Enhancing refinery heavy oil fractions analytical performance through real-time predicative modeling. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00625-4

Keywords

Navigation