Log in

Fe-doped carbon dots: a novel fluorescent nanoprobe for cellular hypochlorous acid imaging

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Real-time monitoring of hypochlorous acid (HClO) in biological systems is of great significance for exploring and regulating its pathological functions because abnormal production of HClO is closely related with many diseases, such as atherosclerosis, rheumatoid arthritis, and cancer. Herein, we developed a reliable fluorescent Fe-doped carbon dots (Fe-CDs) for the sensitive and selective detection of biological HClO using ferrocenecarboxylic acid and m-phenylenediamine as precursors through a one-step solvothermal procedure. The Fe-CDs exhibited excellent a wide HClO detection range from 20 nmol/L to 1000 nmol/L with corresponding limits of detection at 7.8 nmol/L. The sensing mechanism is based on the chemical oxidation of the hydroxyl groups on the surface of Fe-CDs by HClO. In addition, Fe-CDs also displayed high photoluminescence yield, excitation-independence emission, as well as good biocompatibility, enabling the successful imaging of endogenous and exogenous HClO in HeLa cells. These results revealed that Fe-CDs holds great promise as a robust fluorescent probe for investigating HClO-mediated biological events.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. X. Yu, W. Ouyang, H. Qiu, Z. Zhang, Z. Wang, B. **ng, Chem. Eur. J. (2022). https://doi.org/10.1002/chem.202201966

    Article  PubMed  Google Scholar 

  2. S. Thekkan, M.S. Jani, C. Cui, K. Dan, G. Zhou, L. Becker, Y. Krishnan, Nat. Chem. Biol. (2019). https://doi.org/10.1038/s41589-018-0176-3

    Article  PubMed  Google Scholar 

  3. Z.M. Prokopowicz, F. Arce, R. Biedroń, C.L.L. Chiang, M. Ciszek, D.R. Katz, M. Nowakowska, S. Zapotoczny, J. Marcinkiewicz, B.M. Chain, J. Immunol. (2009). https://doi.org/10.4049/jimmunol.0902606

    Article  PubMed  Google Scholar 

  4. Y. Dai, S. Cheng, Z. Wang, R. Zhang, Z. Yang, J. Wang, B.C. Yung, Z. Wang, O. Jacobson, C. Xu, Q. Ni, G. Yu, Z. Zhou, X. Chen, ACS Nano (2018). https://doi.org/10.1021/acsnano.7b06852

    Article  PubMed  PubMed Central  Google Scholar 

  5. T.W. Liu, S.T. Gammon, P. Yang, D. Fuentes, D. Piwnica-Worms, Sci. Signal. (2021). https://doi.org/10.1126/scisignal.aax5971

    Article  PubMed  PubMed Central  Google Scholar 

  6. D. Wu, L. Chen, Q. Xu, X. Chen, J. Yoon, Acc. Chem. Res. (2019). https://doi.org/10.1021/acs.accounts.9b00307

    Article  PubMed  PubMed Central  Google Scholar 

  7. M. Yang, X. Guo, F. Mou, J. Guan, Chem. Rev. (2023). https://doi.org/10.1021/acs.chemrev.2c00062

    Article  PubMed  PubMed Central  Google Scholar 

  8. C. Duan, M. Won, P. Verwilst, J. Xu, H.S. Kim, L. Zeng, J.S. Kim, Anal. Chem. (2019). https://doi.org/10.1021/acs.analchem.9b00224

    Article  PubMed  PubMed Central  Google Scholar 

  9. S. Kenmoku, Y. Urano, H. Kojima, T. Nagano, J. Am. Chem. Soc. (2007). https://doi.org/10.1021/ja068740g

    Article  PubMed  Google Scholar 

  10. X. Jiao, Y. Li, J. Niu, X. **e, X. Wang, B. Tang, Anal. Chem. (2018). https://doi.org/10.1021/acs.analchem.7b04234

    Article  PubMed  Google Scholar 

  11. H. Fang, Y. Chen, S. Geng, S. Yao, Z. Guo, W. He, Anal. Chem. (2022). https://doi.org/10.1021/acs.analchem.2c03887

    Article  PubMed  PubMed Central  Google Scholar 

  12. X. Yao, R.E. Lewis, C.L. Haynes, Acc. Chem. Res. (2022). https://doi.org/10.1021/acs.accounts.2c00533

    Article  PubMed  Google Scholar 

  13. C.R. Yang, Y.S. Lin, R.S. Wu, C.J. Lin, H.W. Chu, C.C. Huang, A. Anand, B. Unnikrishnan, H.T. Chang, J. Colloid Interf. Sci. (2023). https://doi.org/10.1016/j.jcis.2022.12.076

    Article  Google Scholar 

  14. Y. Bai, Y. Wang, L. Cao, Y. Jiang, Y. Li, H. Zou, L. Zhan, C. Huang, Anal. Chem. (2021). https://doi.org/10.1021/acs.analchem.1c03515

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. Liu, H. Cai, Y. Zeng, Y. Chen, X. Yu, J. Song, P. Zeng, J. Qu, J. Guo, H. Li, Anal. Chim. Acta (2022). https://doi.org/10.1016/j.aca.2022.340202

    Article  PubMed  PubMed Central  Google Scholar 

  16. B. Wang, S. Lu, Matter (2022). https://doi.org/10.1016/j.matt.2021.10.016

    Article  PubMed  PubMed Central  Google Scholar 

  17. Y. Gao, Y. Liu, H. Zhang, W. Lu, Y. Jiao, S. Shuang, C. Dong, J. Mater. Chem. B (2022). https://doi.org/10.1039/d2tb01695h

    Article  PubMed  PubMed Central  Google Scholar 

  18. Q. Ci, Y. Wang, B. Wu, E. Coy, J. Li, D. Jiang, P. Zhang, G. Wang, Adv. Sci. (2023). https://doi.org/10.1002/advs.202206271

    Article  Google Scholar 

  19. Z. Tang, S. Shen, J. Zhuang, X. Wang, Angew. Chem. Int. Ed. (2010). https://doi.org/10.1002/ange.201000270

    Article  Google Scholar 

  20. S. Bhattacharyya, F. Ehrat, P. Urban, R. Teves, R. Wyrwich, M. Döblinger, J. Feldmann, A.S. Urban, J.K. Stolarczyk, Nat. Commun. (2017). https://doi.org/10.1038/s41467-017-01463-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. W. Gao, J. He, L. Chen, X. Meng, Y. Ma, L. Cheng, K. Tu, X. Gao, C. Liu, M. Zhang, K. Fan, D.W. Pang, X. Yan, Nat. Commun. (2023). https://doi.org/10.1038/s41467-023-35828-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. X. Tian, J. Luo, H. Nan, Z. Fu, J. Zeng, S. Liao, J. Mater. Chem. A (2015). https://doi.org/10.1039/c5ta04410c

    Article  Google Scholar 

  23. M. Zheng, Z. **e, D. Qu, D. Li, P. Du, X. **g, Z. Sun, A.C.S. Appl, Mater. Interfaces (2013). https://doi.org/10.1021/am4042355

    Article  Google Scholar 

  24. Y.Y. Liu, N.Y. Yu, W.D. Fang, Q.G. Tan, R. Ji, L.Y. Yang, S. Wei, X.W. Zhang, A.J. Miao, Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-21080-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Angew. Chem. Int. Ed. (2013). https://doi.org/10.1038/s41467-021-21080-z

    Article  Google Scholar 

  26. X. Zhu, T. Zhao, Z. Nie, Y. Liu, S. Yao, Anal. Chem. (2015). https://doi.org/10.1021/acs.analchem.5b02167

    Article  PubMed  PubMed Central  Google Scholar 

  27. R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, Angew. Chem. Int. Ed. (2009). https://doi.org/10.1002/anie.200900652

    Article  Google Scholar 

  28. M. Jia, L. Peng, M. Yang, H. Wei, M. Zhang, Y. Wang, Carbon (2021). https://doi.org/10.1016/j.carbon.2021.05.050

    Article  Google Scholar 

  29. X. Wang, Y. Liu, Q. Zhou, X. Sheng, Y. Sun, B. Zhou, J. Zhao, J. Guo, Sci. Total. Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.137680

    Article  PubMed  PubMed Central  Google Scholar 

  30. Q.Q. Zhang, B.B. Chen, H.Y. Zou, Y.F. Li, C.Z. Huang, Biosens. Bioelectron. (2018). https://doi.org/10.1016/j.bios.2017.08.049

    Article  PubMed  PubMed Central  Google Scholar 

  31. M. Lan, Y. Di, X. Zhu, T.W. Zhu, J. **a, W. Liu, X. Meng, P. Wang, C.Z. Lee, W. Zhang, Chem. Commun. (2015). https://doi.org/10.1039/c5cc05835j

    Article  Google Scholar 

  32. J.J. Hu, X.L. Bai, Y.M. Liu, X. Liao, Anal. Chim. Acta (2017). https://doi.org/10.1016/j.aca.2017.09.038

    Article  PubMed  Google Scholar 

  33. C. Liu, B. Tang, S. Zhang, M. Zhou, M. Yang, Y. Liu, Z.L. Zhang, B. Zhang, D.W. Pang, J. Phys. Chem. C (2018). https://doi.org/10.1021/acs.jpcc.7b12681

    Article  Google Scholar 

  34. Z. Wei, H. Li, S. Liu, W. Wang, H. Chen, L. **ao, C. Ren, X. Chen, Anal. Chem. (2019). https://doi.org/10.1021/acs.analchem.9b03272

    Article  PubMed  PubMed Central  Google Scholar 

  35. H.X. Zhao, L.Q. Liu, Z.D. Liu, Y. Wang, X.J. Zhao, C.Z. Huang, Chem. Commun. (2011). https://doi.org/10.1039/c0cc04399k

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, No. 21976144 and 22134005), and Chongqing Talents Program for Outstanding Scientists (cstc2021ycjh-bgzxm0179) for financial support.

Funding

This article is funded by National Natural Science Foundation of China, 21976144, Cheng Zhi Huang, 22134005, Cheng Zhi Huang, Chongqing Talents Program for Outstanding Scientists, cstc2021ycjh-bgzxm0179, Lei Zhan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhi Huang, Shu Jun Zhen or Lei Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.M., Yan, Y., Zhou, J.Y. et al. Fe-doped carbon dots: a novel fluorescent nanoprobe for cellular hypochlorous acid imaging. ANAL. SCI. 40, 511–518 (2024). https://doi.org/10.1007/s44211-023-00484-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00484-5

Keywords

Navigation