Log in

An all-embracing analytical method comprising modified QuEChERS-dispersive micro-solid-phase extraction–dispersive liquid–liquid microextraction using FeGA MOF for the extraction and preconcentration of pesticides simultaneously from juice and flesh of watermelon

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

For the first time, a comprehensive analytical method based on a one-dimensional metal–organic framework comprising “quick, easy, cheap, effective, rugged, and safe-dispersive micro solid phase extraction-dispersive liquid–liquid microextraction” was introduced in this research. Moreover, the first-ever attempt was accomplished to apply the iron–gallic acid metal–organic framework in analytical method development. The goal of the research was to analyze the pesticide content of watermelon comprehensively in its flesh and juice. Based on this, comprehensive and reliable food safety monitoring can be done. Initially, pesticides of the watermelon flesh were extracted using an mL volume of acetonitrile by vortexing. At the same time, the pesticides of watermelon juice were extracted from the juice matrix onto the sorbent particles facilitated by vortexing. The obtained acetonitrile phase was also used to desorb the analytes from the sorbent surface by vortexing. As a result, the pesticide content of both juice and flesh was extracted into the acetonitrile. The pesticide-enriched acetonitrile was then used as the disperser solvent by being merged with µL level of 1,2-dibromoethane and injection into deionized water. A cloudy solution was created as the result. Centrifugation triggered extractant at the bottom of the conical glass test tube and an aliquot of it was injected into a gas chromatograph equipped with a flame ionization detector. High enrichment factors (210–400), appreciable extraction recoveries (42–80%), wide linear ranges (3.20–1000 µg kg−1), relative standard deviations in the ranges of 3.6–4.4% for intra- (n = 6) and 4.4–5.3% for inter-day (n = 3) precisions, and low limits of detection (0.43–0.97 µg kg−1), and quantification (1.42–3.20 µg kg−1) were obtained by the application of the developed method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

FeGA MOF:

Iron–gallic acid metal–organic framework

DLLME:

Dispersive liquid–liquid microextraction

DµSPE:

Dispersive micro-solid-phase extraction

EF:

Enrichment factor

ER:

Extraction recovery

FID:

Flame ionization detector

GC:

Gas chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

LR:

Linear range

QuEChERS:

Quick, easy, cheap, effective, rugged, and safe

RSD:

Relative standard deviation

References

  1. X.L. Zhang, H.Y. Niu, Sh.X. Zhang, Y.Q. Cai, Anal. Bioanal. Chem. 397(2), 791 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. K. Kambia, T. Dine, B. Gressier, A.F. Germe, M. Luyckx, C. Brunet, L. Michaud, F. Gottrand, J. Chromatogr. B Biomed. Sci. Appl. 755, 297 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. I.D. Tegladza, T. Qi, T. Chen, K. Alorku, Sh. Tang, W. Shen, D. Kong, A. Yuan, J. Liu, H.K. Lee, J. Hazard. Mater. 393, 122403 (2020)

    Article  Google Scholar 

  4. L. Yangcheng, L. Quan, L. Guangsheng, D. Youyuan, Anal. Chim. Acta 566(2), 259 (2006)

    Article  Google Scholar 

  5. A. Esrafili, M. Baharfar, M. Tajik, Y. Yamini, M. Ghambarian, Trends Anal. Chem. 108, 314 (2018)

    Article  CAS  Google Scholar 

  6. A. Wilkowska, M. Biziuk, Food Chem. 125(3), 803 (2011)

    Article  CAS  Google Scholar 

  7. S.A. Barker, J. Biochem. Biophys. Method. 70, 151 (2007)

    Article  CAS  Google Scholar 

  8. S. Pezhhanfar, M.A. Farajzadeh, N. Mohsen Daraei, N. Taghipour BaghaliNobar, S.A. Hosseini-Yazdi, M.R. Afshar Mogaddam, Microchem. J. 183, 107967 (2022)

    Article  CAS  Google Scholar 

  9. S. Pezhhanfar, M.A. Farajzadeh, S.A. Hosseini-Yazdi, M.R. Afshar Mogaddam, New J. Chem. 45(38), 18208 (2021)

    Article  CAS  Google Scholar 

  10. D. Haldar, P. Duarah, M.K. Purkait, Chemosphere 251, 126388 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. Y.H. Hu, L. Zhang, Adv. Mater. 22, 1 (2010)

    Article  Google Scholar 

  12. S. Pezhhanfar, M.A. Farajzadeh, S.A. Hosseini-Yazdi, M.R. Afshar Mogaddam, J. Iran Chem. Soc. 19, 2407 (2022)

    Article  CAS  Google Scholar 

  13. Y. Ren, G.H. Chia, Zh. Gao, NanoToday 8(6), 577 (2013)

    Article  CAS  Google Scholar 

  14. F.X.L. Xamena, A. Abad, A. Corma, H. Garcia, J. Catal. 250(2), 294 (2007)

    Article  Google Scholar 

  15. H. Cai, Y. Huang, D. Li, Coordin. Chem. Rev. 378(1), 207 (2019)

    Article  CAS  Google Scholar 

  16. S. Pezhhanfar, M.A. Farajzadeh, B. Abdollahi, S.A. Hosseini-Yazdi, M.R. Afshar Mogaddam, Anal. Bioanal. Chem. Res. 9(4), 319 (2022)

    CAS  Google Scholar 

  17. S. Pezhhanfar, M.A. Farajzadeh, S.A. Hosseini-Yazdi, M.R. Afshar Mogaddam, Talanta Open 5, 100121 (2022)

    Article  Google Scholar 

  18. Y.A. Ghorbani, S.M. Ghoreishi, M. Ghani, Polycycl. Aromat. Comp. 42(8), 5496 (2022)

    Article  CAS  Google Scholar 

  19. M.A. Habila, B. Alhenaki, A. El-Marghany, M. Sheikh, A.A. Ghfar, Z.A. ALOthman, M. Soylak, Separations 9, 32 (2022)

    Article  CAS  Google Scholar 

  20. M. Habila, B. Alhenaki, A. El-Marghany, M. Sheikh, A. Ghfar, Z. Alothman, M. Soylak, J. Sep. Sci. 43(15), 3103 (2022)

    Article  Google Scholar 

  21. C. Hermosa, B.R. Horrocks, J.I. Martnez, F. Liscio, J. Gomez-Herrero, F. Zamora, Chem. Sci. 6, 2553 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M.M. Maoto, D. Beswa, A.I.O. Jideani, Int. J. Food Prop. 22(1), 355 (2019)

    Article  CAS  Google Scholar 

  23. G. Bianchi, A. Rizzolo, M. Grassi, L. Provenzi, R.L. Scalzo, Postharvest Biol. Technol. 136(1), 1 (2018)

    Article  CAS  Google Scholar 

  24. Sh.M. Lynch, R. Mahajan, L.E. Beane Freeman, J.A. Hoppin, M.C.R. Alavanja, Environ. Res. 109(1), 860 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ch.L. Beseler, L. Stallones, J.A. Hoppin, M.C.R. Alavanja, A. Blair, Th. Keefe, F. Kamel, Environ. Health Perspect. 116(12), 1713 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  26. M.F. Bouchard, J. Chevrier, K.G. Harley, K. Kogut, M. Vedar, N. Calderon, C. Trujillo, C. Johnson, A. Bradman, D.B. Barr, B. Eskenazi, Environ. Health Perspect. 119(8), 1189 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Everett, E. Matheson, Environ. Int. 36(1), 398 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. M. Araoud, N. Gazzah, W. Douki, M.F. Najjar, A. Kenani, Afr. J. Biotechnol. 11, 12579 (2012)

    Article  CAS  Google Scholar 

  29. H. Niu, Y. Zheng, S. Wang, S. He, Y. Cai, J. Mater. Chem. A 5, 16600 (2017)

    Article  CAS  Google Scholar 

  30. FTIR, Retrieved October 17, 2022. https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html

  31. L. Li, W. Li, D. Qin, Sh. Jiang, F. Liu, J. AOAC Int. 92(2), 538 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. A. Lozano, L. Rajski, N. Belmonte-Valles, A. Uclés, S. Uclés, M. Mezcua, A.R. Fernández-Alba, J. Chromatogr. A 1268, 109 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. Th.D. Nguyen, E.M. Han, M.S. Seo, S.R. Kim, M.Y. Yun, D.M. Lee, G. Lee, Anal. Chim. Acta 619, 67 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Han, L. Song, N. Zou, R. Chen, Y. Qin, C. Pan, J. Chromatogr. B 1031, 99 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University of Tabriz for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

SP: MOF synthesis and characterization, analytical methodology, analytical analysis, and writing the manuscript. MAF: analytical methodology and editing the manuscript. SAH-Y: synthesis methodology. MRAM: analytical methodology.

Corresponding author

Correspondence to Mir Ali Farajzadeh.

Ethics declarations

Conflict of interest

There are no competing interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezhhanfar, S., Farajzadeh, M.A., Hosseini-Yazdi, S.A. et al. An all-embracing analytical method comprising modified QuEChERS-dispersive micro-solid-phase extraction–dispersive liquid–liquid microextraction using FeGA MOF for the extraction and preconcentration of pesticides simultaneously from juice and flesh of watermelon. ANAL. SCI. 39, 1201–1214 (2023). https://doi.org/10.1007/s44211-023-00330-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00330-8

Keywords

Navigation