Log in

Directional propagation of action potential within a single cell and intercellular conduction within a cell aggregate using model cell systems

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The mechanism of directional propagation of action potential throughout a single cell was examined using a liquid-membrane model cell system. In the experiments on the liquid-membrane model cell system, liquid-membrane cells were constructed to mimic the function of K+ and voltage-gated Na+ channels, which play important roles in action potential propagation. These channel-mimicking cells were connected electrically, and a model cell system was composed of four parts within the one cell. When one voltage-gated Na+ channel-mimicking cell was connected to form the action potential and generated the inflow current at the one part, action potential occurred in the surrounding area due to the local circulating current and propagated to the other parts. The action potential propagation throughout the cell by a brief electrical stimulus (10 ms) was easier than that by a long electrical stimulus (2 s). The long electric stimulus thus caused hyperpolarized region within the cell. Moreover, the increase in resistance corresponding to the extracellular fluid weakened the action potential propagation. In the simulation experiments using the software LTspice, the characteristics of K+ and Na+ channel-mimicking cells were reproduced in the electrical circuit also. A model cell aggregate consisting of closely packed three model cells and the extracellular fluid was constructed in the electric circuit. When one cell fired, the electrical signal propagated to the neighboring cells through the intercellular and extracellular fluids. This result suggests that electrical propagation can occur between independent cells in closely packed tissues without chemical transmission or direct propagation across the gap junctions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Robert, P. Walter, Molecular Biology of the Cell, 6th edn. (W. W. Norton & Company, New York, 2014)

    Google Scholar 

  2. B. Alberts, K. Hopkin, A.D. Johnson, D. Morgan, M. Raff, K. Roberts, P. Walter, Essential Cell Biology-An Introduction to the Molecular Biology-, 5th edn. (W. W. Norton & Company, New York, 2018)

    Google Scholar 

  3. W. Lim, B. Mayer, T. Pawson, Cell Signaling-Principles and Mechanisms, Garland Science (Taylor & Francis Group, LLC., New York, 2015)

    Google Scholar 

  4. M.J. Berridge, J. Physiol. 586, 5047 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R.E. Haddock, C.E. Hill, J. Physiol. 566, 645 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M.S. Nielsen, L.N. Axelsen, P.L. Sorgen, V. Verma, M. Delmar, N.H. Holstein-Rathlou, Compr. Physiol. 2012, 2 (1981)

    Google Scholar 

  7. S. Rohr, Cardiovasc. Res. 62, 309 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. G.S. Goldberg, V. Valiunas, P.R. Brink, Biochim. Biophys. Acta 1662, 96 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. D.A. Goodenough, D.L. Paul, Cold Spring Harb. Perspect. Biol. 1, a002576 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  10. C. Mahapatra, K.L. Brain, R. Manchanda, PLoS ONE 13, e0200712 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  11. P.M. Hopkins, Contin. Educ. Anaesth. Crit. Care Pain 6, 1 (2006)

    Article  Google Scholar 

  12. A.L. Hodgkin, A.F. Huxley, Bull. Math. Biol. 52, 25 (1990)

    Article  CAS  PubMed  Google Scholar 

  13. N. Ueya, O. Shirai, Y. Kushida, S. Tsujimura, K. Kano, J. Electroanal. Chem. 673, 8 (2012)

    Article  CAS  Google Scholar 

  14. Y. Kushida, O. Shirai, Y. Kitazumi, K. Kano, Bull. Chem. Soc. Jpn. 87, 110 (2014)

    Article  CAS  Google Scholar 

  15. Y. Kushida, O. Shirai, Y. Kitazumi, K. Kano, Electroanalysis 2014, 26 (1858)

    Google Scholar 

  16. Y. Kushida, O. Shirai, Y. Takano, Y. Kitazumi, K. Kano, Anal. Sci. 31, 677 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Takano, O. Shirai, Y. Kitazumi, K. Kano, Phys. Chem. Chem. Phys. 18, 12689 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Takano, O. Shirai, Y. Kitazumi, K. Kano, Phys. Chem. Chem. Phys. 19, 5310 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. O. Shirai, Y. Kitazumi, K. Kano, Electroanalysis 29, 2656 (2017)

    Article  CAS  Google Scholar 

  20. M. Kaji, O. Shirai, Y. Kitazumi, K. Kano, Electrochim. Acta 282, 80 (2018)

    Article  Google Scholar 

  21. M. Kaji, Y. Kitazumi, K. Kano, O. Shirai, Bioelectrochemistry 128, 155 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. M. Kaji, Y. Yamada, Y. Kitazumi, O. Shirai, Electroanalysis 34, 1299 (2022). https://doi.org/10.1002/elan.202100508

    Article  CAS  Google Scholar 

  23. I. Kasai, Y. Kitazumi, K. Kano, O. Shirai, Phys. Chem. Chem. Phys. 22, 21288 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. B. Hille, Ion Channels of Excitable Membranes, 3rd edn. (Sinauer Associates, Sunderland, 2001)

    Google Scholar 

  25. A. Feigenspan, K. Dedek, K. Schlich, R. Weiler, S. Thanos, Investig. Ophthalmol. Visual Sci. 51, 1789 (2010)

    Article  Google Scholar 

  26. T. Akaishi, Tohoku J. Exp. Med. 244, 151 (2018)

    Article  PubMed  Google Scholar 

  27. S.D. Beagle, S.W. Lockless, Nature 527, 44 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. A. Prindle, J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, G.M. Süel, Nature 527, 59 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. Humphries, L. **ong, J. Liu, A. Prindle, F. Yuan, H.A. Arjes, L. Tsimring, G.M. Süel, Cell 168, 200 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Enago (www. Enago.jp) for English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Shirai.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 168 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morishita, R., Sowa, K., Kitazumi, Y. et al. Directional propagation of action potential within a single cell and intercellular conduction within a cell aggregate using model cell systems. ANAL. SCI. 39, 945–955 (2023). https://doi.org/10.1007/s44211-023-00302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00302-y

Keywords

Navigation