Log in

Simple solid-phase colorimetry for trace Cr(VI) by combination of complexation with diphenylcarbazide and ion-pair solid-phase extraction with sedimentable dispersed particulates

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A highly sensitive and simple solid-phase colorimetry for Cr(VI) was proposed. It was based on the ion-pair solid-phase extraction of Cr-diphenylcarbazide (DPC) complex with sedimentable dispersed particulates. The concentration of Cr(VI) was measured from the color tones obtained by image analysis of the photo of sediment. Various conditions, e.g., material and amounts of adsorbent particulates, chemical properties and concentration of counter ions, and pH, were optimized for the formation and quantitative extraction of the complex. In the recommended procedure, 1 mL of sample was put into a 1.5 mL microtube where powder form adsorbent and reagents, i.e., XAD-7HP particles, DPC, sodium dodecyl sulfate, amido sulfuric acid, and sodium chloride had been packed. The analytical operation was completed within 5 min by gently shaking the microtube and allowing it to stand until enough amounts of particulates were deposited to take a picture. Chromium (VI) up to 2.0 ppm was determined, and the detection limit was 0.0034 ppm. The sensitivity was enough to determine Cr(VI) at lower concentrations than the water quality of standard (0.02 ppm). This method was successfully applied to the analysis of simulated industrial wastewater samples. The stoichiometry of the extracted chemical species was also investigated by applying the same equilibrium model as the ion-pair solvent extraction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. B. Dhal, H.N. Thatoi, N.N. Das, B.D. Pandey, Hazard. Mater. (2013). https://doi.org/10.1016/j.jhazmat.2013.01.048

    Article  Google Scholar 

  2. M.-H. Ho, C.-M. Chan, I. Bakar, Int. J. Sustain. Constr. Eng. (2011) https://publisher.uthm.edu.my/ojs/index.php/IJSCET/article/view/66

  3. M. Chrysochoou, S.C. Fakra, M.A. Marcus, H.M. Deok, D. Dermatas, Environ. Sci. Technol. (2009). https://doi.org/10.1021/ES9005338

    Article  PubMed  Google Scholar 

  4. X. Liuyang, H. Yang, S. Huang, Y. Zhang, S. **a, J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2020.104474

    Article  Google Scholar 

  5. M.A. Schneegurt, J.C. Jain, J.A. Menicucci, S.A. Brown, K.M. Kemner, D.F. Garofalo, M.R. Quallick, C.R. Neal, J.F. Kulpa, Environ. Sci. Technol. (2001). https://doi.org/10.1021/es010766e

    Article  PubMed  Google Scholar 

  6. C. Földi, R. Dohrmann, K. Matern, T. Mansfeldt, J. Soils Sediments. (2013). https://doi.org/10.1007/S11368-013-0714-2

    Article  Google Scholar 

  7. A.M. Zayed, N. Terry, Plant Soil. (2003). https://doi.org/10.1023/A:1022504826342

    Article  Google Scholar 

  8. Chromium in drinking-water Background document for development of WHO Guidelines for drinking-water quality, 2020. http://apps.who.int/bookorders Accessed 7 October 2021

  9. Chromium in Drinking Water | US EPA, https://www.epa.gov/sdwa/chromium-drinking-water Accessed 7 October 2021

  10. Chromium in Water - Theory, http://www.acornusers.org/education/HNC-Web/Theory.html#Top Accessed 8 October 2021

  11. N. Unceta, F. Séby, J. Malherbe, O.F.X. Donard, Anal. Bioanal. Chem. (2010). https://doi.org/10.1007/s00216-009-3417-1

    Article  PubMed  Google Scholar 

  12. S. Gumfawar, B. Godboley, A Review on removal of heavy metal (Cr and Cd) using plant seeds for purification of water. Engineering 6, 934–937 (2017)

    Google Scholar 

  13. Diphenylcarbazide - an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/diphenylcarbazide Accessed 8 October 2021

  14. SW-846 Test Method 7196A: Chromium, Hexavalent (Colorimetric) | US EPA, https://www.epa.gov/hw-sw846/sw-846-test-method-7196a-chromium-hexavalent-colorimetric Accessed 30 August 2022

  15. R. Soares, M.C. Carneiro, M.I.C. Monteiroa, S. S. de Henriquae, F.V.M. Pontes, L.I. Dias da Silva, A.A. Neto, R.E. Santelli, Chem. Speciat. Bioavailab. (2009) https://doi.org/10.3184/095422909X466095

  16. A. Sanchez-Hachair, A. Hofmann, Compt. Rendus Chim. (2018). https://doi.org/10.1016/J.CRCI.2018.05.002

    Article  Google Scholar 

  17. M. Gardner, S. Comber, Analyst. (2002). https://doi.org/10.1039/B109374F

    Article  PubMed  Google Scholar 

  18. K.K. Onchoke, S.A. Sasu, Adv. Environ. Chem. (2016). https://doi.org/10.1155/2016/3468635

    Article  Google Scholar 

  19. K. Shigeta, A. Fujita, T. Nakazato, H. TAO, Anal. Sci. (2018) https://doi.org/10.2116/ANALSCI.18P012

  20. Z. Li, Y. Shi, P. Gao, X. Gu, T. Zhou, Fresenius’ J. Anal. Chem. (1997). https://doi.org/10.1007/S002160050458

    Article  Google Scholar 

  21. S. Matsuoka, Y. Nakatsu, K. Takehara, S. Saputro, K. Yoshimura, Anal. Sci. (2006). https://doi.org/10.2116/analsci.22.1519

    Article  PubMed  Google Scholar 

  22. D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman, C. Mabuni, Crit. Rev. Environ. Sci. Technol. (2010). https://doi.org/10.1080/10643389991259164

    Article  Google Scholar 

  23. F.J. Alguacil, A.G. Coedo, M.T. Dorado, A.M. Sastre, Hydrometallurgy (2001). https://doi.org/10.1016/S0304-386X(01)00147-5

    Article  Google Scholar 

  24. V. Camel, Acta Part B At. Spectrosc. (2003). https://doi.org/10.1016/S0584-8547(03)00072-7

    Article  Google Scholar 

  25. I.M.M. Rahman, Z.A. Begum, H. Hasegawa, Microchem. J. (2013). https://doi.org/10.1016/J.MICROC.2013.06.006

    Article  Google Scholar 

  26. B. Galán, D. Castañeda, I. Ortiz, Water Res. (2005). https://doi.org/10.1016/J.WATRES.2005.08.015

    Article  PubMed  Google Scholar 

  27. N. Rajesh, B.G. Mishra, P.K. Pareek, Spectrochim. Biomol. Spectrosc. Acta - Part A Mol. (2008). https://doi.org/10.1016/j.saa.2007.05.011

    Article  Google Scholar 

  28. N. Rajesh, R.K. Jalan, P. Hotwany, J. Hazard. Mater. (2008). https://doi.org/10.1016/j.jhazmat.2007.05.025

    Article  PubMed  Google Scholar 

  29. R. Verma, S. Sarkar, Ind. Eng. Chem. Res. (2020). https://doi.org/10.1021/ACS.IECR.0C04347

    Article  Google Scholar 

  30. T. Kamidate, T. Segawa, H. Watanabe, K. Yamaguchi, Anal. Sci. (1989). https://doi.org/10.2116/ANALSCI.5.429

    Article  Google Scholar 

  31. T. Inui, K. Fujita, M. Kitano, T. Nakamura, Anal. Sci. (2010). https://doi.org/10.2116/ANALSCI.26.1093

    Article  PubMed  Google Scholar 

  32. S.I. Hasegawa, ISIJ Int. (2014). https://doi.org/10.2355/ISIJINTERNATIONAL.54.131

    Article  Google Scholar 

  33. M. Sarenqiqige, K. Ashitomi, Yoshimura Anal. Sci. (2013). https://doi.org/10.2116/ANALSCI.29.823

    Article  PubMed  Google Scholar 

  34. Y. Yokota, A. Manaka, M. Tafu, T. Kato, K. Tomita, T. Akazawa, Bull. Chem. Soc. Jpn. (2019). https://doi.org/10.1246/bcsj.20180351

    Article  Google Scholar 

  35. T. Kato, Y. Nagashima, A. Manaka, C. Nakamura, S. Oshite, S. Igarashi, Anal. Sci. (2019). https://doi.org/10.2116/ANALSCI.19N001

    Article  PubMed  Google Scholar 

  36. A. Manaka, Y. Ueno, M. Tafu, T. Kato, Anal. Sci. (2022). https://doi.org/10.2116/ANALSCI.21N029

    Article  PubMed  Google Scholar 

  37. K. Yoshimura, S. Ohashi, Talanta (1978). https://doi.org/10.1016/0039-9140(78)80041-1

    Article  PubMed  Google Scholar 

  38. S. Saputro, K. Yoshimura, S. Matsuika, K. Takehara, Anal. Sci. (2009). https://doi.org/10.2116/analsci.25.1445

    Article  PubMed  Google Scholar 

  39. S. Sarenqiqige, S. Saputro, M. Kai, S. Satoda, K. Matsuoka, Yoshimura Anal. Sci. (2013). https://doi.org/10.2116/ANALSCI.29.677

    Article  PubMed  Google Scholar 

  40. T. Takahashi, E. Kaneko, T. Yotsuyanagi, Anal. Sci. (2006). https://doi.org/10.2116/analsci.22.1585

    Article  PubMed  Google Scholar 

  41. H. Asano, Y. Shiraishi, Anal. Sci. (2018). https://doi.org/10.2116/analsci.34.71

    Article  PubMed  Google Scholar 

  42. H.M. Zhai, T. Zhou, F. Fang, Z.Y. Wu, Talanta (2020). https://doi.org/10.1016/j.talanta.2019.120635

    Article  PubMed  Google Scholar 

  43. A. Muhammed, A. Hussen, M. Redi, T. Kaneta, Anal. Sci. (2021). https://doi.org/10.2116/analsci.20P325

    Article  PubMed  Google Scholar 

  44. W. Tan, Aruna, Z. Xu, L. Zhang, W. Shen (2020) Talanta. https://doi.org/10.1016/j.talanta.2020.121116

  45. W. Alahmad, P. Varanusupakul, T. Kaneta, P. Varanusupakul, Anal. Chim. Acta. (2019). https://doi.org/10.1016/J.ACA.2019.08.002

    Article  PubMed  Google Scholar 

  46. W. Alahmad, N. Tungkijanansin, T. Kaneta, P. Varanusupakul, Talanta (2018). https://doi.org/10.1016/j.talanta.2018.07.056

    Article  PubMed  Google Scholar 

  47. N. Kohama, K. Matsuhira, T. Okazaki, K. Sazawa, N. Hata, H. Kuramitz, S. Taguchi, Anal Chem Bioanal (2022). https://doi.org/10.1007/s00216-022-04375-y

    Article  Google Scholar 

  48. D.K. Sharma, R. Sharma, Indian J. Sci. Technol. (2015) https://doi.org/10.17485/IJST/2015/V8I11/71773

  49. L. Liu, Y. Leng, H. Lin, Microchim. Acta. (2016). https://doi.org/10.1007/S00604-016-1777-8

    Article  Google Scholar 

  50. T. Watanabe, H. Mizuguchi, J. Shida, Bunseki Kagaku (2011). https://doi.org/10.2116/bunsekikagaku.60.339

    Article  Google Scholar 

  51. S. Taguchi, K. Nakamura, T. Hiraide, K. Goto, Bunseki Kagaku (1982). https://doi.org/10.2116/bunsekikagaku.31.9_548

    Article  Google Scholar 

  52. I. Kasahara, Y. Ohgaki, K. Matsui, K. Kano, S. Taguchi, K. Goto, Nippon Kagaku Kaishi (1986). https://doi.org/10.1246/nikkashi.1986.894

    Article  Google Scholar 

  53. K. Miyabe, S. Taguchi, I. Kasahara, K. Goto, J. Phys. Chem. B. (2000). https://doi.org/10.1021/jp000918c

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JST SPRING, Grant Number JPMJSP2145and the Japan Society for the Promotion of Science (JSPS) via a Grant-in-Aid for Scientific Research (Grant JP 22H01624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kuramitz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohama, N., Okazaki, T., Sazawa, K. et al. Simple solid-phase colorimetry for trace Cr(VI) by combination of complexation with diphenylcarbazide and ion-pair solid-phase extraction with sedimentable dispersed particulates. ANAL. SCI. 39, 857–865 (2023). https://doi.org/10.1007/s44211-023-00286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00286-9

Keywords

Navigation