Log in

A visual denaturation bubble-mediated strand exchange amplification and RGB visual analysis-based assay for quantitative detection of Helicobacter pylori in saliva

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Helicobacter pylori (H. pylori) is a class I carcinogen causing gastric cancer. Almost 50% of people on earth have been infected and it is worse in develo** countries. Early diagnosis of H. pylori infection is the most important strategy for preventing the spread and worse consequences. H. pylori can be isolated from human saliva, and the sampling of saliva is easy and convenient. Therefore, we developed a visual denaturation bubble-mediated strand exchange amplification and RGB visual analysis-based assay for quantitative detection of H. pylori in saliva in this study. Under the optimized reaction temperature and time, the SEA reaction could be finished in 30 min with a simple reaction system and low dependency on equipment. The detection results could be qualitatively identified by the naked eye and quantitatively analyzed by a developed RGB visual analysis method. The limit of detection (LOD) of RGB visual analysis was 10.8 CFU/mL. This assay had good specificity and anti-interference capacity. In the artificial contamination test, the recovery rate of our assay was between 99.3% and 111.5%, with RSD values ranging from 1.7% to 3.5%. These indicated our assay also had good reliability in the detection of saliva. We believe this assay showed good potential for better non-invasive diagnosis of H. pylori infection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Amieva, R.M. Peek Jr., Gastroenterology (2016). https://doi.org/10.1053/j.gastro.2015.09.004

    Article  PubMed  Google Scholar 

  2. D.Y. Graham, Gastroenterology (2015). https://doi.org/10.1053/j.gastro.2015.01.040

    Article  PubMed  Google Scholar 

  3. N. Manabe, K. Matsueda, K. Haruma, Digestion (2022). https://doi.org/10.1159/000519602

    Article  PubMed  Google Scholar 

  4. I.A. Charitos, D. D’Agostino, S. Topi, L. Bottalico, Gastroenterol Insigh. (2021). https://doi.org/10.3390/gastroent12020011

    Article  Google Scholar 

  5. M. Plummer, S. Franceschi, J. Vignat, D. Forman, C. de Martel, Int J Cancer. (2015). https://doi.org/10.1002/ijc.28999

    Article  PubMed  PubMed Central  Google Scholar 

  6. Z.Q. Song, Y. Chen, H. Lu, Z.R. Zeng, W.H. Wang, X.F. Liu, G.X. Zhang, Q. Du, X.Z. **a, C.P. Li, S.L. Jiang, T. Wu, P.Y. Li, S.X. He, Y. Zhu, G.Y. Zhang, J.M. Xu, Y. Li, L.J. Huo, C.H. Lan, Y.L. Miao, H.X. Jiang, P. Chen, L.J. Shi, B.G. Tuo, D.K. Zhang, K. Jiang, J.B. Wang, P. Yao, X.X. Huang, S.Q. Yang, X.H. Wang, L.Y. Zhou, Helicobacter (2022). https://doi.org/10.1111/hel.12889

    Article  PubMed  Google Scholar 

  7. D.S. Bordin, I.N. Voynovan, D.N. Andreev, I.V. Maev, Diagnostics. (2021). https://doi.org/10.3390/diagnostics11081458

    Article  PubMed  PubMed Central  Google Scholar 

  8. X.Y. Wang, S.Z. Zhang, E.G. Chua, Y.S. He, X.F. Li, A.J. Liu, H.T. Chen, M.J. Marshall, D.Y. Sun, X.H. Li, C.Y. Tay, Gut Pathog. (2021). https://doi.org/10.1186/s13099-021-00435-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. C. Kusano, T. Gotoda, H. Ikehara, S. Suzuki, H. Shibuya, T. Horii, S. Arata, T. Dohmen, Digestion (2021). https://doi.org/10.1159/000502900

    Article  PubMed  Google Scholar 

  10. M. Halland, R. Haque, J. Langhorst, J.H. Boone, W.A. Petri, Eur J Clin Microbiol. (2021). https://doi.org/10.1007/s10096-020-04137-7

    Article  Google Scholar 

  11. P.S. Anand, K.P. Kamath, S. Anil, World J Gastroentero. (2014). https://doi.org/10.3748/wjg.v20.i19.5639

    Article  Google Scholar 

  12. C.C. Jiang, C.F. Li, T.Z. Ha, D.A. Ferguson, D.S. Chi, J.J. Laffan, E. Thomsa, Digest Dis Sci. (1998). https://doi.org/10.1023/A:1018847522200

    Article  PubMed  Google Scholar 

  13. B. Seligova, L. Lukac, M. Babelova, S. Vavrova, P. Sulo, Helicobacter (2020). https://doi.org/10.1111/hel.12680

    Article  PubMed  Google Scholar 

  14. E. Goud, R. Kannan, U.K. Rao, E. Joshua, R. Tavaraja, Y. Jain, J Pharm Bioallied Sc. (2019). https://doi.org/10.4103/jpbs.JPBS_260_18

    Article  Google Scholar 

  15. A. Diouf, J. Martinez-Gomis, M. Miquel, M. Quesada, S. Lario, M. Sixou, Pathol Biol. (2009). https://doi.org/10.1016/j.patbio.2008.07.008

    Article  PubMed  Google Scholar 

  16. C. Goosen, J. Theron, M. Ntsala, F.F. Maree, A. Olckers, S.J. Botha, A.J. Lastovica, S.W. Van der Merwe, J Clin Microbiol (2002). https://doi.org/10.1128/JCM.40.1.205-209.2002

    Article  PubMed  PubMed Central  Google Scholar 

  17. K. Bangpanwimon, P. Mittraparp-Arthorn, K. Srinitiwarawong, N. Tansila, J Microbiol Biotechn. (2021). https://doi.org/10.4014/jmb.2101.01008

    Article  Google Scholar 

  18. C. Shi, F.J. Shang, M.L. Zhou, P.S. Zhang, Y.F. Wangb, C.P. Ma, Chem Commun. (2016). https://doi.org/10.1039/c6cc05906f

    Article  Google Scholar 

  19. W. Goldring, R.W. Clarke, H, W, Smith. J Clin Invest. (1936). https://doi.org/10.1172/JCI100771

    Article  PubMed  PubMed Central  Google Scholar 

  20. J. Deng, Y. Li, W.Q. Shi, R. Liu, C.P. Ma, C. Shi, Anal Biochem. (2020). https://doi.org/10.1016/j.ab.2020.113593

    Article  PubMed  Google Scholar 

  21. P.K. Burduk, A. Kaczmarek, A. Budzynska, W. Kazmierczak, E. Gospodarek, Arch Med Res. (2011). https://doi.org/10.1016/j.arcmed.2011.12.005

    Article  PubMed  Google Scholar 

  22. A. Ajayi, T. Jolaiya, S.I. Smith, BMC Res Notes. (2021). https://doi.org/10.1186/s13104-021-05505-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shaanxi Provincial Natural Science Basic Research Program (No. 2020JZ-59).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhai Li or Zhanmin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, Q., Wang, Y. et al. A visual denaturation bubble-mediated strand exchange amplification and RGB visual analysis-based assay for quantitative detection of Helicobacter pylori in saliva. ANAL. SCI. 39, 483–491 (2023). https://doi.org/10.1007/s44211-022-00251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00251-y

Keywords

Navigation