Log in

Development of a pH-induced dispersive solid-phase extraction method using folic acid combined with dispersive liquid–liquid microextraction: application in the extraction of Cu(II) and Pb(II) ions from water and fruit juice samples

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this study, a new pH-induced dispersive solid-phase extraction method using folic acid has been proposed for the extraction of Cu(II) and Pb(II) ions from water and fruit juice samples. For this purpose, at first, a specified amount of folic acid was dissolved in the sample solution containing the studied ions at pH 8.5. Then, by decreasing pH of the solution, solubility of folic acid reduced and its fine particles containing the analytes were produced. They were separated and dissolved in dimethylformamide. For more preconcentration, the developed procedure was combined with a dispersive liquid–liquid microextraction procedure. Finally, the extracted and enriched analytes were determined by flame atomic absorption spectrometry. The effect of important parameters on the extraction efficiency of the method such as pH, folic acid amount, the amount of complexing agent, dimethylformamide volume, ionic strength, and centrifugation conditions were studied. Under optimized conditions, the developed method showed linear ranges of 0.20–40 and 0.25–40 µg L−1 for Pb(II) and Cu(II) ions, respectively. Limits of detection of Pb(II) and Cu(II) were 0.07 and 0.08 µg L−1, respectively. The relative standard deviations (intra- and inter-day precisions) were between 3.8 and 5.4%. Accuracy of the proposed method was studied by determination of the analytes concentrations in a certified reference material; SPS-WW2 Batch 108. Efficiency of the proposed procedure was evaluated by analyzing Pb(II) and Cu(II) ions in various water and fruit juice samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DDTC:

Diethyldithiocarbamate

DLLME:

Dispersive liquid–liquid microextraction

DMSO:

Dimethyl sulfoxide

DSPE:

Dispersive solid-phase extraction

EF:

Enrichment factor

ER:

Extraction recovery

FAAS:

Flame atomic absorption spectrometry

LOD:

Limit of detection

LOQ:

Limit of quantification

PF:

Preconcentration factor

RSD:

Relative standard deviation

References

  1. J. Sun, Q. Liang, Q. Han, X. Zhang, M. Ding, Talanta 132, 557–563 (2015)

    Article  CAS  Google Scholar 

  2. K. Pytlakowska, Microchim. Acta 183, 91–99 (2016)

    Article  CAS  Google Scholar 

  3. A. Zwolak, M. Sarzynska, E. Szpyrka, K. Stawarczyk, Water Air Soil Poll. 230, 164–172 (2019)

    Article  Google Scholar 

  4. R.A. Goyer, I.J. Chisolon, Academic Press, New York, 1972.

  5. L. Leggio, G. Gasbarrin, G. Addolorato, The Lancet 369, 902 (2007)

    Article  Google Scholar 

  6. J. Mettakoonpitak, D. Miller-Lionberg, T. Reilly, J. Volckens, C.S. Henry, J. Electroanal. Chem. 805, 75–82 (2017)

    Article  CAS  Google Scholar 

  7. T. Saitoh, K. Sakurai, M. Hiraide, Microchem. J. 139, 410–415 (2018)

    Article  CAS  Google Scholar 

  8. T. Ahmadi-Jouibari, A. Aghaei, K. Sharafi, N. Fattahi, RSC Adv. 10, 29460–29468 (2020)

    Article  CAS  Google Scholar 

  9. A.G. Potortì, G.D. Bella, V.L. Turco, R. Rando, G. Dugo, J. Food Comp. Anal. 31, 161–172 (2013)

    Article  Google Scholar 

  10. L. Chen, X. Li, Z. Li, L. Deng, RSC Adv. 10, 6736–6742 (2020)

    Article  CAS  Google Scholar 

  11. F.S. de Dias, S.C. de SR Neto, L.N. de Pires, V.A. Lemos, Anal. Methods 12, 865–871 (2020)

    Article  Google Scholar 

  12. V.J. Ferreira, M.S. de Jesus, M.C. dos Santos, W.N. Guedes, V.A. Lemos, C.G. Novaes, F.S. Costa, C.S.V. Pacheco, E.G.P. da Silva, F.A.C. Amorim, Anal. Methods 13, 267–273 (2021)

    Article  CAS  Google Scholar 

  13. J. Menoutis, A. Parisi, N. Verma, J. Pharm. Biomed. Anal. 152, 12–16 (2018)

    Article  CAS  Google Scholar 

  14. K. Sreenivasa Rao, T. Balaji, T. Prasada Rao, Y. Babu, G.R.K. Naidu, Spectrochim. Acta B 57, 1333–1338 (2002)

    Article  Google Scholar 

  15. M. Öner, S. Bodur, C. Demir, E. Yazıcı, S. Erarpat, S. Bakırdere, J. Food Comp. Anal. 101, 103978 (2021)

    Article  Google Scholar 

  16. Sh.R. Khan, B. Sharma, P.A. Chawla, R. Bhatia, Food Anal. Methods. 15, 666–688 (2022)

    Article  Google Scholar 

  17. K. Molaei, H. Bagheri, A.A. Asgharinezhad, H. Ebrahimzadeh, M. Shamsipur, Talanta 167, 607–616 (2017)

    Article  CAS  Google Scholar 

  18. F. Shakerian, Y. Chelongar, A.M. Haji Shabani, S. Dadfarnia, Microchem. J. 146, 234–238 (2019)

    Article  CAS  Google Scholar 

  19. T.G. Kazi, H.I. Afridi, F.A. Korejo, A. Akhtar, J.A. Baig, Environ. Sci. Pollut. Res. 27, 14543–14552 (2020)

    Article  CAS  Google Scholar 

  20. R. Gürkan, N. Altunay, E. Yıldırım, Food Anal. Methods 9, 3218–3229 (2016)

    Article  Google Scholar 

  21. M. Rajabi, Z. Mollakazemi, M. Hemmati, S. Arghavani-Beydokhti, Anal. Methods 12, 4867–4877 (2020)

    Article  CAS  Google Scholar 

  22. N.E. Karlıdağ, M. Toprak, Z. Tekin, S. Bakırdere, J. Food Compos. Anal. 92, 103583 (2020)

    Article  Google Scholar 

  23. A. Rohanifar, L.B. Rodriguez, A.M. Devasurendra, N. Alipourasiabi, J.L. Anderson, J.R. Kirchhof, Talanta 188, 570–577 (2018)

    Article  CAS  Google Scholar 

  24. X. Song, J. Pang, Y. Wu, X. Huang, Microchem. J. 159, 105370 (2020)

    Article  CAS  Google Scholar 

  25. M. Soylak, E. Kiranartligiller, Arabian J. Sci. Eng. 42, 175–181 (2017)

    Article  CAS  Google Scholar 

  26. E. Stanisz, J. Werner, A. Zgola-Grzeskowiak, Trends Anal. Chem. 61, 54–66 (2014)

    Article  CAS  Google Scholar 

  27. P. Liang, R. Liu, J. Cao, Microchim. Acta 160, 135–139 (2008)

    Article  CAS  Google Scholar 

  28. I.H. Šrámková, B. Horstkotte, K. Fikarová, H. Sklenářová, P. Solich, Talanta 184, 162–172 (2018)

    Article  Google Scholar 

  29. S.M. Sorouraddin, M.A. Farajzadeh, H. Nasiri, Anal. Methods 11, 1379–1386 (2019)

    Article  CAS  Google Scholar 

  30. S.M. Sorouraddin, M.A. Farajzadeh, T. Okhravi, Talanta 175, 359–365 (2017)

    Article  CAS  Google Scholar 

  31. Y. Ji, M. Zhao, A. Li, L. Zhao, Microchem. J. 164, 105974 (2021)

    Article  CAS  Google Scholar 

  32. G. Özzeybek, İ Şahin, S. Erarpat, S. Bakirdere, J. Food Compos. Anal. 90, 103486 (2020)

    Article  Google Scholar 

  33. S. Salari, A. Bahrami, F. Ghamari, F.G. Shahna, Chem. Pap. 72, 1945–1952 (2018)

    Article  CAS  Google Scholar 

  34. W. AliKhan, M.B. Arain, Y. Yamini, N. Shah, T. GulKazi, S. Pedersen-Bjergaard, M. Tajik, J. Pharm. Anal. 10, 109–122 (2020)

    Article  Google Scholar 

  35. M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116, 1–9 (2006)

    Article  CAS  Google Scholar 

  36. E.C. Lourenço, E. Eyng, P.R.S. Bittencourt, F.A. Duarte, R.S. Picoloto, É.L.M. Flores, Talanta 199, 1–7 (2019)

    Article  Google Scholar 

  37. F. Huang, Y. Xu, S. Liao, D. Yang, Y.L. Hsieh, Q. Wei, Materials 6, 969–980 (2013)

    Article  CAS  Google Scholar 

  38. M. Liu, L. Yang, L. Zhang, Talanta 161, 288–296 (2016)

    Article  CAS  Google Scholar 

  39. H. Ahmad, Ch. Cai, Ch. Liu, Microchem. J. 145, 833–842 (2019)

    Article  CAS  Google Scholar 

  40. L. Suo, X. Dong, X. Gao, J. Xu, Zh. Huang, J. Ye, X. Lu, L. Zhao, Microchem. J. 149, 104039 (2019)

    Article  CAS  Google Scholar 

  41. U. Haripriyan, K.P. Gopinath, J. Arun, Mater. Lett. 312, 131670 (2022)

    Article  CAS  Google Scholar 

  42. X. Zhang, M. Yu, Y. Li, F. Cheng, Y. Liu, M. Gao, G. Liu, L. Hu, Y. Liang, Microchem. J. 168, 106474 (2021)

    Article  CAS  Google Scholar 

  43. B. Feist, R. Sitko, Microchem. J. 147, 30–36 (2019)

    Article  CAS  Google Scholar 

  44. J.W. Choi, S.G. Chung, S.W. Hong, D.J. Kim, S.H. Lee, Water Air Soil Poll. 223, 1837–1846 (2012)

    Article  CAS  Google Scholar 

  45. E. Ghasemi, A. Heydari, M. Sillanpää, Microchem. J. 147, 133–141 (2019)

    Article  CAS  Google Scholar 

  46. M. Khan, E. Yilmaz, B. Sevinc, E. Sahmetlioglu, J. Shah, M. RasulJan, M. Soylak, Talanta 146, 130–137 (2016)

    Article  CAS  Google Scholar 

  47. M. Ghazaghi, H. Zavvar Mousavi, A. Morad Rashidi, H. Shirkhanloo, R. Rahighi, Talanta 150, 476–484 (2016)

    Article  CAS  Google Scholar 

  48. C. Erger, T.C. Schmidt, Trends Anal. Chem. 61, 74–82 (2014)

    Article  CAS  Google Scholar 

  49. M.S. Field, P.J. Stover, Ann. N.Y. Acad. Sci. 1414, 59–71 (2018)

    Article  Google Scholar 

  50. K. Pietrzik, L. Bailey, B. Shane, Clin. Pharmacokinet. 49, 535–548 (2010)

    Article  CAS  Google Scholar 

  51. X. Jia, Y. Han, X. Liu, T. Duan, H. Chen, Spectrochim. Acta Part B 66, 88–92 (2011)

    Article  Google Scholar 

  52. X. Wen, Q. Yang, Z. Yan, Q. Deng, Microchem. J. 97, 249–254 (2011)

    Article  CAS  Google Scholar 

  53. W. Zhen, L. **uxi, H. Chunyan, Y. Qian, J. Chem. Eng. Data 55, 3958–3961 (2010)

    Article  Google Scholar 

  54. S.M. Sorouraddin, M.A. Farajzadeh, A. Hassanyani, M.R. Afshar Mogaddam, RSC Adv. 6, 108603–108610 (2016)

    Article  CAS  Google Scholar 

  55. T. Borahana, T. Unutkanb, N.B. Turanc, F. Turaka, S. Bakırdere, Food Chem. 299, 125065 (2019)

    Article  Google Scholar 

  56. W. Gu, X. Zhu, Microchim. Acta 184, 1–8 (2017)

    Article  Google Scholar 

  57. M. Behbahani, M. Salarian, M.M. Amini, O. Sadeghi, A. Bagheri, S. Bagheri, Food Anal. Methods 6, 1320–1329 (2013)

    Article  Google Scholar 

  58. N. Kanani, M. Bayat, F. Shemirani, J.B. Ghasemi, Z. Bahrami, A. Badiei, Res. Chem. Intermed. 44, 1689–1709 (2018)

    Article  CAS  Google Scholar 

  59. C. Er, B.F. Senkal, M. Yaman, Food Chem. 137, 55–61 (2013)

    Article  CAS  Google Scholar 

  60. K. Pytlakowska, M. Matussek, B. Hachuła, M. Pilch, K. Kornausc, M. Zubkod, W.A. Pisarski, Spectrochim. Acta B 147, 79–86 (2018)

    Article  CAS  Google Scholar 

  61. N. Pourreza, S. Rastegarzadeh, A. Larki, J. Ind. Eng. Chem. 20, 2680–2686 (2014)

    Article  CAS  Google Scholar 

  62. J. Zhang, J. Environ. Sci. 25, 2331–2337 (2013)

    Article  CAS  Google Scholar 

  63. D. Mendil, M. Karatas, M. Tuzen, Food Chem. 177, 320–324 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

Saeed Mohammad Sorouraddin has received research grants from University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mohammad Sorouraddin.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorouraddin, S.M., Parvizzad, K. & Farajzadeh, M.A. Development of a pH-induced dispersive solid-phase extraction method using folic acid combined with dispersive liquid–liquid microextraction: application in the extraction of Cu(II) and Pb(II) ions from water and fruit juice samples. ANAL. SCI. 39, 23–31 (2023). https://doi.org/10.1007/s44211-022-00194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00194-4

Keywords

Navigation