Log in

Advances in Biodegradable Orthopaedic Implants: Optimizing Magnesium Alloy Corrosion Resistance for Enhanced Bone Repair

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Biomaterials revolutionize medicine, enabling cutting-edge applications like anchoring devices, substitutes, and advanced surgical equipment. Bio-implants are intended to sustain a damaged biological structure, substitute for an absent biological structure, or augment an extant biological structure. Utilized bioimplants can be classified as ceramics, metals, or polymers. Among the different types of implant materials, many are designed to remain permanently in the body, despite their temporary function. Biodegradable implants are particularly advantageous because they dissolve and are absorbed during the healing process. This invention spares patients from additional surgeries, reduces immobility, and cuts medical costs. In particular, biodegradable implants have improved orthopaedic surgical results, reduced complications, and promoted natural bone repair. With its outstanding biocompatibility and biodegradability, magnesium (Mg) stands out as a promising biodegradable orthopaedic implant. Its mechanical properties mimic natural bone, which helps to prevent stress shielding and enhances osteoblast attachment. Despite these advantages, the rapid degradation of magnesium poses challenges for sustained bone growth. Therefore, improving magnesium's corrosion resistance is crucial for its effective use in bone production. Mg-based metallic glasses, which are stronger, more elastic, and highly corrosion-resistant than crystalline materials, are being considered as biodegradable implant materials. The chemical homogeneousness, absence of secondary phases, and lack of grain boundaries in Mg metallic glasses reduce the formation of Mg2+ ions, H2 bubbles, and OH ions. Successful implantation of tacks, screws, and other orthopaedic implants needs Mg metallic glasses to be a few centimetres thick. However, maximum-diameter glasses require a high glass-forming alloy. Thus, for Mg alloys to readily become glassy and larger in diameter, the composition of these glasses must be understood. This study explores current research, strategies, and technological advancements in biodegradable orthopaedic implants, with a particular focus on the performance of Mg. Furthermore, it provides an in-depth analysis of magnesium alloys' corrosion behaviour and discusses solutions to reduce their corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

Upon reasonable request, the corresponding author will provide the datasets that were generated and analysed during the current study.

References

  1. L.L. Hench, E.C. Ethridge, Biomaterials—the interfacial problem. Adv. Biomed. Eng. 5, 35–150 (1975)

    Article  Google Scholar 

  2. Y. Ren, K. Yang, B. Zhang, Y. Wang, Y. Liang, Nickel-free stainless steel for medical applications. J. Mater. Sci. Technol. 20(5), 571–573 (2004)

    CAS  Google Scholar 

  3. M. Geetha, D. Durgalakshmi, R. Asokamani, Biomedical implants: corrosion and its prevention—a review. Recent Pat. Corrosion Sci. 2, 40–54 (2010)

    Article  Google Scholar 

  4. J.Y. Wong, J.D. Bronzino, Biomaterials (CRC Press, Boca Raton, 2007)

    Google Scholar 

  5. V. Gayatri, Implantable orthopedic smart device. Biomed. Arena. 1(1), 7–10 (2015)

    Google Scholar 

  6. R.A. Freitas, Nanomedicine Volume IIA: Biocompatibility (Landes Bioscience, Austin, 2003)

    Book  Google Scholar 

  7. R.S. Greco, F.B. Prinz, R.L. Smith, Nanoscale technology in biological systems (CRC Press, Boca Raton, 2005)

    Google Scholar 

  8. V.S.D. Viteri, E. Fuentes, Titanium and titanium alloys as biomaterials (INTECH open science, London, 2013)

    Book  Google Scholar 

  9. C.P.A.T. Klein, A.A. Dreissen, K. deGroot, Biodegradation behavior of various calcium phosphate materials in bone tissue. J. Biomed. Mater. Res. 17, 769–784 (1983)

    Article  CAS  PubMed  Google Scholar 

  10. Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals. Mater. Sci. Eng. R 77, 1–34 (2014)

    Article  Google Scholar 

  11. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27, 1728–1734 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. J. Wang, Y. Li, S. Huang, Y. Wei, X. **, K. Cai et al., Effects of Y on the microstructure, mechanical and bio-corrosion properties of Mg–Zn–Ca Bulk metallic glass. J. Mater. Sci. Technol. 30(12), 1255–1261 (2014)

    Article  CAS  Google Scholar 

  13. B. Zberg, E.R. Arata, P.J. Uggwitzer, J.F. Loffler, Tensile properties of glassy MgZnCa wires and reliability analysis using weibull statistics. Acta Mater. 57, 3223–3231 (2009)

    Article  CAS  Google Scholar 

  14. M.K. Datta, D.T. Choua, D. Hong, P. Saha, S.J. Chung, B. Lee et al., Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying. Mater. Sci. Eng. B 176(20), 1637–1643 (2011)

    Article  CAS  Google Scholar 

  15. G. Molenat, L. Durand, J. Galy, A. Couret, Temperature control in spark plasma sintering: an FEM approach. J. Metall. (2010). https://doi.org/10.1155/2010/145431

    Article  Google Scholar 

  16. C. Suryanarayana, A. Inoue, Bulk Metallic Glasses (Taylor and Francis Group, Boca Raton, 2011)

    Google Scholar 

  17. Y. Ahmed, M.M.M. Hassan, A. Wael, T.E.W. Mohamed, S.A. Mohamed, Develo** biodegradable polymeric composite for nails manufacturing of bone fracture fixation. Egypt. J. Chem. 67(13), 349–359 (2024)

    Google Scholar 

  18. W.J. Jang, I.H. Park, J.H. Oh, K.H. Choi, Y.B. Song, J.Y. Hahn, S.H. Choi et al., Efficacy and safety of durable versus biodegradable polymer drug-eluting stents in patients with acute myocardial infarction complicated by cardiogenic shock. Sci. Rep. 14(1), 6301 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K.S. Anseth, V.R. Shastri, R. Langer, Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat. Biotechnol. 17, 156–159 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. O. Bostman, H. Pihlajamaki, Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 21, 2615–2621 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. L. Claes, A. Ignatius, Development of new, biodegradable implants. Chirurg 73, 990–996 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Ida, B. Design and evaluation of a biodegradable magnesium alloy for use as an implant material. Master thesis, School of Technology and Health Division of Medical Engineering. (Stockholm, Sweden, 2010)

  23. Hermawan, H.; Ramdan, D. & Djuansjah, J.R.P. Metals for biomedical applications, Biomedical Engineering—From Theory to Applications, (2011) (www.intechopen.com).

  24. Neil, G. & Hermann, S. The use of alloys in prosthetic devices. Business Briefing: Medical Device Manufacturing & Technology, (2002), pp.48–51.

  25. S. Youssef, A. Jabbari, Physico-mechanical properties and prosthodontic applications of Co–Cr dental alloys: a review of the literature. J. Adv. Prosthodont. 6, 138–145 (2014)

    Article  Google Scholar 

  26. E.J. Evans, I.T. Thomas, The in vitro toxicity of cobalt-chrome molybdenum alloy and its constituent metals. Biomaterials 7, 25–29 (1986)

    Article  CAS  PubMed  Google Scholar 

  27. A. Marti, Cobalt-base alloys used in bone surgery. Injury 31(4), 18–21 (2000)

    Article  PubMed  Google Scholar 

  28. R.T. Bothe, L.E. Beaton, H.A. Davenport, Reaction of bone to multiple metallic implants. Surg. Gynecol. Obstet. 71, 598–602 (1940)

    Google Scholar 

  29. V. Oliveira, R.R. Chaves, R. Bertazzoli, R. Caram, Preparation and characterization of Ti–Al–Nb alloys for orthopedic implants. Braz. J. Chem. Eng. 17, 326–333 (1998)

    Article  Google Scholar 

  30. U. Zwicker, K. Buhler, R. Muller, H. Beck, H.J. Schmid, J. Ferstl, In titanium’80. J. Mech. Prop. Tissue React. Titan. Alloy Implant Mater. 1, 505–514 (1980)

    Google Scholar 

  31. M. Long, H.J. Rack, Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19, 1621–1639 (1998)

    Article  CAS  PubMed  Google Scholar 

  32. D. Kuroda, H. Kawasaki, A. Yamamoto, S. Hiromoto, T. Hanawa, Mechanical properties and microstructures of new Ti–Fe–Ta and Ti–Fe–Ta–Zr system alloys. Mater. Sci. Eng. C 25, 312–320 (2005)

    Article  Google Scholar 

  33. Matsumoto, H.; Watanabe, S. & Hanada, S. Strengthening of low Young’s modulus beta Ti–Nb–Sn alloys by thermomechanical processing. Proceeding of the Materials and Processes for Medical Devices Conference, (2006), pp.14–16.

  34. L.J. Gibson, The mechanical behavior of cancellous bone. J. Biomech. 18, 317–328 (1985)

    Article  CAS  PubMed  Google Scholar 

  35. S. Kujala, J. Ryhanen, A. Danilov, J. Tuukkanen, Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute. Biomaterials 24, 4691–4697 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. L. Yuhua, Y. Chao, Z. Haidong, Q. Shengguan, L. **aoqiang, L. Yuanyuan, New developments of Ti-based alloys for biomedical applications. Materials 7, 1709–1800 (2014)

    Article  Google Scholar 

  37. F. Witte, The history of biodegradable magnesium implants: a review. Acta Biomater. 6, 1680–1692 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. M. Hasan, A.K. Yusuf, G. Gurkan, Y.E. Tuluhan, U. Melih, K. Ozkan, Bioabsorbable magnesium screw versus conventional titanium screw fixation for medial malleolar fractures. J. Orthop. Traumatol. 21(1), 9 (2020)

    Article  Google Scholar 

  39. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, L.A. Meyer, C.J. Wirth et al., In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17), 3557–3563 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. E.C. Huse, A new ligature. Chicago Med. J. Exam. 37, 171–172 (1878)

    Google Scholar 

  41. E. Payr, Master of surgery. Archiv fur Klinische Chirurgie 62, 67–93 (1900)

    Google Scholar 

  42. E. Payr, The technique of treating cavernous tumors. Zentralblatt Chir 30, 233–234 (1903)

    Google Scholar 

  43. Zheng, Y. Magnesium alloys as degradable biomaterials, (2015).

  44. Y. Sun, B.P. Zhang, Y. Wang, L. Geng, X.H. Jiao, Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater. Des. 34, 58–64 (2012)

    Article  Google Scholar 

  45. B. Marco, C. Valentino, F. Danya, S. Elisa, M. Mario, P.G. Antonio, Use of resorbable magnesium screws in children: systematic review of the literature and short-term follow-up from our series. J. Childr. Orthopaed. 15(3), 194–203 (2021)

    Article  Google Scholar 

  46. H. Faezeh, M.S. Seyed, M. Roghayeh, P.S.C. Narendra, S. Ghasem, Nanomaterials supported by polymers for tissue engineering applications: a review. Heliyon 8(12), e12193 (2022)

    Article  Google Scholar 

  47. A. Hasan, M. Morshed, A. Memic, S. Hassan, T.J. Webster, H.E. Marei, Nanoparticles in tissue engineering: applications, challenges and prospects. Int. J. Nanomed. 13, 5637–5655 (2018)

    Article  CAS  Google Scholar 

  48. R.M. Jose, L.E. Jose, C. Alejandra, H. Katherine, B.K. Juan, T.R. Jose, J.Y. Miguel, The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346 (2005)

    Article  Google Scholar 

  49. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019)

    Article  CAS  Google Scholar 

  50. A.M. Fathi, M.H. Knopf, S.C.E. Ribeiro, J. Barthès, E. Bat, A. Tezcaner, N.E. Vrana, Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng. Biotechnol. 7, 00113 (2019)

    Article  Google Scholar 

  51. A. Amini, P. Kazemzadeh, M. Jafari, M.M. Moghaddam, N.P.S. Chauhan, N. Fazelian, S. Ghasem, Fabrication of fibrous materials based on cyclodextrin and egg shell waste as an affordable composite for dental applications. Front. Mater. 9, 919935 (2022)

    Article  Google Scholar 

  52. Z. Kai, W. **g**g, L. Wei, D. Dirk, W. Ying, R. Aldo, Boccaccini incorporation of Cu-containing bioactive glass nanoparticles in gelatin-coated scaffolds enhances bioactivity and osteogenic activity. ACS Biomater. Sci. Eng. 4(5), 1546–1557 (2018)

    Google Scholar 

  53. Z. Ruizhong, L. Puiyan, C.H. Vincent, C. Yan, L. Xuelai, N.L. Chun et al., Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomed. Nanotechnol. Biol. Med. 11(8), 1949–1959 (2015)

    Article  Google Scholar 

  54. B. Arundhati, J. Piyali, P. Nilkamal, M. Tapas, L.B. Sovan, G. Arumugam et al., Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohyd. Polym. 151, 879–888 (2016)

    Article  Google Scholar 

  55. J.C. Forero, E. Roa, J.G. Reyes, C. Acevedo, N. Osses, Development of useful biomaterial for bone tissue engineering by incorporating nano-copper-zinc alloy (nCuZn) in chitosan/gelatin/nano-hydroxyapatite (Ch/G/nHAp) scaffold. Materials 10, 1177 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  56. A. Aysen, E.T. Melek, G. Gultekin, Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering. Polym. Compos. 41(6), 2411–2425 (2020)

    Article  Google Scholar 

  57. Y. Zhao, T. Fan, J. Chen, J. Su, X. Zhi, P. Pan et al., Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf. B 174, 70–79 (2019)

    Article  CAS  Google Scholar 

  58. D.M. de Oliveira, D.B. Menezes, L.R. Andrade, F. da Lima, C. Hollanda, L. Zielinska et al., Silver nanoparticles obtained from Brazilian pepper extracts with synergistic anti-microbial effect: production characterization hydrogel formulation cell viability, and in vitro efficacy. Pharmaceut. Develop. Technol. 26(5), 539–548 (2021)

    Article  Google Scholar 

  59. D.D. Cao, Z.L. Xu, Y.X. Chen, Q.F. Ke, C.Q. Zhang, Y.P. Guo, Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. J. Biomed. Mater. Res. Part B 106, 863–873 (2018)

    Article  CAS  Google Scholar 

  60. X. **e, K. Hu, D. Fang, L. Shang, S.D. Tran, M. Cerruti, Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7, 7992–8002 (2015)

    Article  CAS  PubMed  Google Scholar 

  61. J. Lee, Y. Shin, S.M. Lee, O.S. **, S.H. Kang, S.W. Hong et al., Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci. Rep. 5, 18833 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. W. Shao, J. He, F. Sang, Q. Wang, L. Chen, S. Cui, B. Ding, Enhanced bone formation in electrospun poly(l-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Mater. Sci. Eng. C 62, 823–834 (2016)

    Article  CAS  Google Scholar 

  63. A. Pietak, P. Mahoney, G.J. Dias, M.P. Staiger, Bone-like matrix formation on magnesium and magnesium alloys. J. Mater. Sci.—Mater. Med. 19, 407–415 (2008)

    Article  CAS  PubMed  Google Scholar 

  64. G. Song, Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49, 1696–1701 (2007)

    Article  CAS  Google Scholar 

  65. G.L. Makar, J. Kruger, Corrosion of Magnesium. Int. Mater. Rev. 38(3), 138–153 (1993)

    Article  CAS  Google Scholar 

  66. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions (National Association of Corrosion Engineers, Houston, 1974)

    Google Scholar 

  67. Gunde, P. Biodegradable magnesium alloys for osteosynthesis—alloy development and surface modifications. Ph.D. thesis, Eth Zurich, Switzerland, (2010)

  68. J.D. Hanawalt, C.E. Nelson, J.A. Peloubet, Transactions of the American institute of mining and metallurgical engineers. Am. Inst. Min. Metall. Eng. 147, 273–298 (1942)

    Google Scholar 

  69. N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behavior of AZ31B magnesium alloy. Corros. Sci. 52(2), 589–594 (2010)

    Article  CAS  Google Scholar 

  70. G.B. Hamu, D. Eliezer, L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J. Alloy. Compd. 468(1–2), 222–229 (2009)

    Article  Google Scholar 

  71. W.K. Miller, In stress-corrosion cracking, in Materials Park. ed. by A.S.M. International (Ohio, 1992), pp.251–263

    Google Scholar 

  72. W.M. Pardue, F.H. Beck, M.G. Fontana, Propagation of stress -corrosion cracking in a magnesium-base alloy as determined by several techniques. Trans. Am. Soc. Metal. 54, 539–548 (1961)

    CAS  Google Scholar 

  73. Pugh, E.N.; Green, J.A.S. & Slattery, P.W. Proceedings of the Second International Conference on Fracture, Brighton, (1969) pp. 387–395.

  74. L. Fairman, H.J. Bray, Transgranular see in Mg–Al alloys. Corros. Sci. 11(7), 533–541 (1971)

    Article  CAS  Google Scholar 

  75. N. Winzer, A. Atrens, G.L. Song, E. Ghali, W. Dietzel, K.U. Kainer et al., A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater. 7(8), 659–693 (2005)

    Article  CAS  Google Scholar 

  76. J.Y. Lee, G. Han, Y.C. Kim, Y.J. Byun, J.I. Jang, H.K. Seok et al., Effects of impurities on the biodegradation behavior of pure magnesium. Met. Mater. Int. 15(6), 955–961 (2009)

    Article  CAS  Google Scholar 

  77. H.E. Friedrich, B.L. Mordike, Magnesium technology—metallurgy (Springer, Berlin, 2005)

    Google Scholar 

  78. Z.J. Li, X.N. Gu, S.Q. Lou, Y.F. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10), 1329–1344 (2008)

    Article  CAS  PubMed  Google Scholar 

  79. H. Tapiero, K.D. Tew, Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharmacother. 57(9), 399–411 (2003)

    Article  CAS  PubMed  Google Scholar 

  80. M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys (ASM International Handbook Committee, Ohio, 1999)

    Google Scholar 

  81. S.X. Zhang, X.N. Zhang, C.L. Zhao, J.A. Li, Y. Song, C.Y. **e et al., Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 6(2), 626–640 (2010)

    Article  CAS  PubMed  Google Scholar 

  82. S. Sripanyakorn, R. Jugdaohsingh, H. Elliott, C. Walker, P. Mehta, S. Shoukru et al., The silicon content of beer and its bioavailability in healthy volunteers. Br. J. Nutr. 91(3), 403–409 (2004)

    Article  CAS  PubMed  Google Scholar 

  83. X.N. Gu, X.H. **e, N. Li, Y.F. Zheng, L. Qin, In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 8(6), 2360–2374 (2012)

    Article  CAS  PubMed  Google Scholar 

  84. T. Berglundh, I. Abrahamsson, J.P. Albouy, J. Lindhe, Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clin. Oral Implant Res. 18(2), 147–152 (2007)

    Article  CAS  Google Scholar 

  85. N. Hort, Y. Huang, D. Fechner, M. Stormer, C. Blawert, F. Witte et al., Magnesium alloys as implant materials—principles of property design for Mg–RE alloys. Acta Biomater. 6(5), 1714–1725 (2010)

    Article  CAS  PubMed  Google Scholar 

  86. H.M. Wong, K.W.K. Yeung, K.O. Lam et al., A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31, 2084–2096 (2010)

    Article  CAS  PubMed  Google Scholar 

  87. Y.X. Yang, F.Z. Cui, I.S. Lee, Y.P. Jiao, Q.S. Yin, Y. Zhang, Ion-beam assisted deposited C–N coating on magnesium alloys. Surf. Coat. Technol. 202(22–23), 5737–5741 (2008)

    Article  CAS  Google Scholar 

  88. G. Wu, R. Xu, K. Feng, S. Wu, Z. Wu, G. Sun et al., Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation. Appl. Surf. Sci. 258(19), 7651–7657 (2012)

    Article  CAS  Google Scholar 

  89. R.J. Julian, Review of bioactive glass: from hench to hybrids. Acta Biomater. 9(1), 4457–4486 (2013)

    Article  Google Scholar 

  90. James, E S. Introduction to glass science and technology. (2020)

  91. A. Gebert, U. Wolff, A. John, J. Eckert, L. Schultz, Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes. Mater. Sci. Eng. A 299, 125–135 (2001)

    Article  Google Scholar 

  92. J.R. Groza, J.F. Shackelford, E.J. Lavernia, M.T. Powers, Materials processing handbook (Taylor & Francis Group, Boca Raton, 2007)

    Book  Google Scholar 

  93. Masood, A. Functional metallic glasses. Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden. (2012)

  94. D. Turnbull, Under what conditions can a glass be formed. Contemp. Phys. 10, 473–488 (1969)

    Article  CAS  Google Scholar 

  95. N. Nishiyama, A. Inoue, Solidification of metallic glasses (CRC Press, Boca Raton, 2002)

    Book  Google Scholar 

  96. A. Inoue, N. Nishiyama, H.M. Kimura, Preparation and thermal stabilityof bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans.—Japan Inst. Metal. Mater. 38, 179–183 (1997)

    CAS  Google Scholar 

  97. X. Zhang, G. Chen, T. Bauer, Mg-based bulk metallic glass composite with high bio-corrosion resistance and excellent mechanical properties. Intermetallics 29, 56–60 (2012)

    Article  CAS  Google Scholar 

  98. M. Ramya, S. Sarwat, V. Udhayabanu, S. Subramanian, B. Raj, K.R. Ravi, Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications. Mater. Des. 86, 829–835 (2015)

    Article  CAS  Google Scholar 

  99. E. Park, W. Kim, D. Kim, Bulk glass formation in Mg-Cu-Ag-Y-Gd alloy. Mater. Trans. 45(7), 2474–2477 (2004)

    Article  CAS  Google Scholar 

  100. M. Shanthi, M. Gupta, A. Jarfors, Synthesis, characterization and mechanical properties of nano alumina particulate reinforced magnesium based bulk metallic glass composites. M. Tan. Mater. Sci. Eng. A 528(18), 6045–6050 (2011)

    Article  CAS  Google Scholar 

  101. S. Ding, Combinatorial development of bulk metallic glasses. Nat. Mater. 13(5), 494–500 (2014)

    Article  CAS  PubMed  Google Scholar 

  102. D. Zhang, W. Feng, X. Wang, S. Yang, Fabrication of Mg65Zn30Ca5 amorphous coating by laser remelting. J. Non-Cryst. Solids (2021). https://doi.org/10.1016/j.jnoncrysol.2018.07.067

    Article  Google Scholar 

  103. D. Zhang, Y. Qin, W. Feng, M. Huang, X. Wang, S. Yang, Microstructural evolution of the amorphous layers on Mg–Zn–Ca alloy during laser remelting process. Surf. Coat. Technol. 363, 87–94 (2019)

    Article  CAS  Google Scholar 

  104. C. Zhang, D. Ouyang, S. Pauly, L. Liu, 3D printing of bulk metallic glasses. Mater. Sci. Eng. R. Rep. 145, 100625 (2021)

    Article  Google Scholar 

  105. J. Chu, Thin film metallic glasses: unique properties and potential applications. Thin Solid Films 520(16), 5097–5122 (2012)

    Article  CAS  Google Scholar 

  106. H. Liu, W. Li, Y. Pei, Mg-based materials with quasiamorphous phase produced by vertical twin-roll casting process. Metals (Basel) 10(4), 452 (2020)

    Article  CAS  Google Scholar 

  107. J. Li, L. Wang, H. Zhang, Z. Hu, H. Cai, Synthesis and characterization of particulate reinforced Mg-based bulk metallic glass composites. Mater. Lett. 61(11–12), 2217–2221 (2007)

    Article  CAS  Google Scholar 

  108. X. Gu, Y. Zheng, S. Zhong, T. **, J. Wang, W. Wang, Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials 31(6), 1093–1103 (2010)

    Article  CAS  PubMed  Google Scholar 

  109. B. Zberg, P.J. Uggowitzer, J.F. Loffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887–891 (2009)

    Article  CAS  PubMed  Google Scholar 

  110. Y.W. Peng, G.W. **, W. Cheng, S.L. Jia, M.H. Zhen, J. Hong, X.L. Mei et al., Designing a new Mg-Zn-Ca-Y wrought alloy with high strength and ductility synergy. Materialia 16, 101073 (2021)

    Article  Google Scholar 

  111. J.D. Cao, P. Martens, K.J. Laws, P. Boughton, M. Ferry, Quantitative in vitro assessment of Mg65Zn30Ca5 degradation and its effect on cell viability. J. Biomed. Mater. Res. B Appl. Biomater. 101B(1), 43–49 (2012)

    Article  Google Scholar 

  112. Y. **ao, L. Dongyang, L. Yuanchao, D. Pengfei, H. **anghui, Z. Yue et al., In vitro and in vivo studies on the degradation and biosafety of Mg–Zn–Ca–Y alloy hemostatic clip with the carotid artery of SD rat model. Mater. Sci. Eng. C 115, 111093 (2020)

    Article  Google Scholar 

  113. S. Gonzalez, E. Pellicer, J. Fornell, A. Blanquer, L. Barrios, E. Ibanez et al., Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg–Zn–Ca alloys through Pd-alloying. J. Mech. Behav. Biomed. Mater. 6, 53–62 (2012)

    Article  CAS  PubMed  Google Scholar 

  114. H. Li, S. Pang, Y. Liu, L. Sun, P.K. Liaw, T. Zhang, Biodegradable Mg-Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Mater. Des. 67, 9–19 (2014)

    Article  Google Scholar 

  115. H. Li, S. Pang, Y. Liu, P.K. Liaw, T. Zhang, In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. J. Non-Cryst. Solids 427, 134–138 (2015)

    Article  CAS  Google Scholar 

  116. M. Ramya, M.P. Mamatha, R. Selvakumar, B. Raj, K.R. Ravi, Hydroxyapatite particle (HAp) reinforced biodegradable Mg–Zn–Ca metallic glass composite for bio-implant application. Biomed. Phys. Eng. Express 4, 025039 (2018)

    Article  Google Scholar 

  117. H.C. Yim, W.L. Johnson, Bulk metallic glass matrix composites. Appl. Phys. Lett. 71(26), 3808–3810 (1997)

    Article  Google Scholar 

  118. R.U. Vaidya, K.N. Subramanian, Metallic-glass ribbon-reinforced glass-ceramic matrix composites. J. Mater. Sci. 25, 3291–3296 (1990)

    Article  CAS  Google Scholar 

  119. P.G. Zielinski, D.G. Ast, Preparation of rapidly solidified ribbons with 2nd phase particles. J. Mater. Sci. Lett. 2, 495–498 (1983)

    Article  CAS  Google Scholar 

  120. K.M. Flores, W.L. Johnson, R.H. Dauskardt, Fracture and fatigue behavior of a Zr–Ti–Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Mater. 49, 1181–1187 (2003)

    Article  CAS  Google Scholar 

  121. S. Vincent, D.R. Peshwe, B.S. Murty, J. Bhatt, Thermodynamic prediction of bulk metallic glass forming alloys in ternary Zr–Cu–X (X = Ag, Al, Ti, Ga) systems. J. Non-Cryst. Solids 357, 3495–3499 (2011)

    Article  CAS  Google Scholar 

  122. A. Inoue, T. Zhang, T. Masumoto, Glass-forming ability of alloys. J. Non Cryst. Solids 156–158(2), 473–480 (1993)

    Article  Google Scholar 

  123. Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 15(13), 3501–3512 (2002)

    Article  Google Scholar 

  124. K. Mondal, B.S. Murty, On the parameters to assess the glass forming ability of liquids. J. Non Cryst. Solids 351(16–17), 1366–1371 (2005)

    Article  CAS  Google Scholar 

  125. L.J. Gallego, J.A. Somoza, J.A. Alonso, Glass formation in ternary transition metal alloys. J. Phys. Condens. Matter 2(29), 6245 (1990)

    Article  CAS  Google Scholar 

  126. T. Egami, Y. Waseda, Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64(1–2), 113–134 (1984)

    Article  CAS  Google Scholar 

  127. D.B. Miracle, A structural model for metallic glass. Nat. Mater. 3, 697–702 (2004)

    Article  CAS  PubMed  Google Scholar 

  128. A.K. Niessen, F.R. deBoer, R. Boom, P.F. deChatel, W.C.M. Mattens, A.R. Miedema, Model predictions for the enthalpy of formation of transition metal alloys II. Calphad 7, 51–70 (1983)

    Article  CAS  Google Scholar 

  129. B.S. Murty, S. Ranganathan, M.M. Rao, Solid state amorphization in binary Ti–Ni, Ti–Cu and ternary Ti–Ni–Cu system by mechanical alloying. Mater. Sci. Eng. A 149(2), 231–240 (1992)

    Article  Google Scholar 

  130. R. Busch, W.L. Johnson, The kinetic glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass. Appl. Phys. Lett. 72(21), 2695–2697 (1998)

    Article  CAS  Google Scholar 

  131. A. Takeuchi, A. Inoue, Calculations of amorphous-forming composition range for ternary alloy systems and analyses of stabilization of amorphous phase and amorphous-forming ability. Mater. Trans. 42(7), 1435–1444 (2001)

    Article  CAS  Google Scholar 

  132. J. Basu, B.S. Murty, S. Ranganathan, Glass forming ability: miedema approach to (Zr, Ti, Hf)–(Cu, Ni) binary and ternary alloys. J. Alloy. Compd. 465(1–2), 163–172 (2008)

    Article  CAS  Google Scholar 

  133. J. Bhatt, B.S. Murty, Identification of bulk metallic forming compositions through thermodynamic and topological models. Mater. Sci. Forum 649, 67–73 (2010)

    Article  CAS  Google Scholar 

  134. B. Ramakrishnarao, M. Srinivas, A.K. Shah, A.S. Gandhi, B.S. Murty, A new thermodynamic parameter to predict glass forming ability in iron based multi-component systems containing zirconium. Intermetallics 35, 73–81 (2013)

    Article  CAS  Google Scholar 

  135. J. Bhatt, W. Jiang, X. Junhai, W. Qing, C. Dong, B.S. Murty, Optimization of bulk metallic glass forming compositions in Zr–Cu–Al system by thermodynamic modeling. Intermetallics 15(5), 716–721 (2007)

    Article  CAS  Google Scholar 

  136. M. Ramya, S. Syed Ghazi, V. Udhayabanu, R. Baldev, K.R. Ravi, Exploring Mg–Zn–Ca based bulk metallic glasses for biomedical applications based on thermodynamic approach. Metall. Mater. Trans. A 46(12), 5962–5971 (2015)

    Article  CAS  Google Scholar 

  137. Y. Liu, Y. Zheng, X.H. Chen et al., Fundamental theory of biodegradable metals—definition, criteria, and design. Adv. Funct. Mater. 29, 1–21 (2019)

    Google Scholar 

  138. X. Zhang, Y. Wu, Y. Xue, Z. Wang, L. Yang, Biocorrosion behavior and cytotoxicity of a Mg–Zn–Y alloy with long period stacking ordered structure. Mater. Lett. 86, 42–45 (2012)

    Article  CAS  Google Scholar 

  139. A. Kumar, P.M. Pandey, Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy. J. Magnes. Alloy. 8, 883–898 (2020). https://doi.org/10.1016/j.jma.2020.02.011

    Article  CAS  Google Scholar 

  140. A. Singh, M. Watanabe, A. Kato, A.P. Tsai, Formation of icosahedral hexagonal H phase nano-composites in MgZnY alloys. Scripta Mater. 51(10), 955–960 (2004)

    Article  CAS  Google Scholar 

  141. K. Yu, J. Chen, S. Zhao, Y. Li, Q. Dai, Z. Huang et al., In vitro corrosion behavior and in vivo biodegradation of biomedical α-Ca3(PO4)2/Mg–Zn composites. Acta Biomater. 8, 2845–2855 (2012)

    Article  CAS  PubMed  Google Scholar 

  142. K. Pichler, S. Fischerauer, P. Ferlic, E. Martinelli, H.P. Brezinsek, P.J. Uggowitzer et al., Immunological response to biodegradable magnesium implants. J. Min. Metal. Mater. Soc. 66(4), 573–579 (2014)

    Article  CAS  Google Scholar 

  143. M. Ramya, K.R. Ravi, Biodegradable nanocrystalline Mg–Zn–Ca–Ag alloys as suitable materials for orthopedic implants. Mater. Today: Proc. 58(2), 721–725 (2022)

    CAS  Google Scholar 

  144. G. **ong, Y. Nie, D. Ji, J. Li, C. Li, W. Li, Y. Zhu, H. Luo, Y. Wan, Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr. Appl. Phys. 16, 830–836 (2016)

    Article  Google Scholar 

  145. D. Liu, Y. Zuo, W. Meng, M. Chen, Z. Fan, Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology. Mater. Sci. Eng. C 32, 1253–1258 (2012)

    Article  CAS  Google Scholar 

  146. M.T. Fulmer, I.C. Ison, C.R. Hankermayer, B.R. Constantz, J. Ross, Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials 23(3), 751–755 (2002)

    Article  CAS  PubMed  Google Scholar 

  147. S. Gaurav, K. Manmeet, P. Shivani, S. Kulvir, Biomass as a sustainable resource for value-added modern materials: a review. Biofuels Bioprod. Biorefin. 3, 673–695 (2020)

    Google Scholar 

  148. Y. Wang, M.J. Tan, J. Pang, Z. Wang, A.W.E. Jarfors, In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: from amorphous to crystalline. Mater. Chem. Phys. 134, 1079–1087 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the management for providing an efficient facility to conduct this research.

Funding

The author declares that no funds, grants, and financial support were received to carry over this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramya.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, M. Advances in Biodegradable Orthopaedic Implants: Optimizing Magnesium Alloy Corrosion Resistance for Enhanced Bone Repair. Biomedical Materials & Devices (2024). https://doi.org/10.1007/s44174-024-00208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-024-00208-x

Keywords

Navigation