Log in

Polymer Based Biofilms: Development and Clinical Application in Medical Science

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

The utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine and healthcare practice, there are currently thousands of medical devices, diagnostic products, and disposables on the market. Based on the data of modern scientific literature, the requirements for medicinal films are outlined, and their classification is given. Approaches to the choice of active and auxiliary substances in the process of develo** new film formulations are described. Novel advancement technology-based Biopolymer Based Biofilms were discussed in detail, i.e. PEGylation of surface, Layer-by-layer (LBL) biofilms, and Nanostructured composite films. The prospects of using films in surgery, wound healing, dentistry, ophthalmology, and dermatology are shown. In this manuscript, we conclude with an overview of the different natural and synthetic polymers that are currently being used and their properties, main aspects of the technological process for the preparation of films are described. as well as new developments in their synthesis and the ways of rational application of films in medical practice have been highlighted. The current chapter also highlights the method of film formation by various technic with their relevant application in the biomedical aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The statements in the paper are properly cited in the paper and no additional data is available.

References

  1. V.K. Vendra, L. Wu, S. Krishnan, Polymer thin films for biomedical applications, in Nanotechnologies for the Life Sciences (2011). https://doi.org/10.1002/9783527610419.ntls0179

  2. Y. Jang, S. Park, K. Char, Functionalization of polymer multilayer thin films for novel biomedical applications. Korean J. Chem. Eng. (2011). https://doi.org/10.1007/s11814-010-0434-x

    Article  Google Scholar 

  3. D.W. Grainger, The Williams dictionary of biomaterials. Mater. Today (1999). https://doi.org/10.1016/s1369-7021(99)80066-2

    Article  Google Scholar 

  4. O.A. Legonkova, M.S. Belova, L.Y. Asanova, A.D. Aliev, A.E. Chalykh, Polymers in the treatment of wounds: realities and perspectives. Wounds Wound Infect. (2016). https://doi.org/10.17650/2408-9613-2016-3-1-12-18

    Article  Google Scholar 

  5. D.F. Williams, The Williams Dictionary of Biomaterials (Liverpool University Prees, Liverpool, 1999). https://doi.org/10.5949/upo9781846314438

    Book  Google Scholar 

  6. P.S. Das, S. Verma, P. Saha, Fast dissolving tablet using solid dispersion technique: a review. Int. J. Curr. Pharm. Res. 2, 8 (2017). https://doi.org/10.22159/ijcpr.2017v9i6.23435

    Article  CAS  Google Scholar 

  7. S. Karki, H. Kim, S.J. Na, D. Shin, K. Jo, J. Lee, Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. (2016). https://doi.org/10.1016/j.ajps.2016.05.004

    Article  Google Scholar 

  8. S.L. Singh, K. Chauhan, A.S. Bharadwaj, V. Kishore, P. Laux, A. Luch, A.V. Singh, Polymer translocation and nanopore sequencing: a review of advances and challenges. Int. J. Mol. Sci. 24(7), 6153 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Arya, A. Chandra, V. Sharma, K. Pathak, Fast dissolving oral films: an innovative drug delivery system and dosage form. Int. J. Chemtech. Res. 2, 576 (2010)

    CAS  Google Scholar 

  10. V. Patel, S. Patel, Delivering drug-polymer complex via quick dissolving film: a step towards the development of an appropriate pediatric formulation. Asian J. Pharm. (2013). https://doi.org/10.4103/0973-8398.110932

    Article  Google Scholar 

  11. T. **, L. Yan, W. Liu, S. Liu, C. Liu, L. Zheng, Preparation and physicochemical/antimicrobial characteristics of asparagus cellulose films containing quercetin. Food Sci. Hum. Wellness (2021). https://doi.org/10.1016/j.fshw.2021.02.015

    Article  Google Scholar 

  12. Y. Zhang, Y. Gao, X. Wang, J. Li, H. Zhang, X. Li, Alginate-aloe vera film contains zinc oxide nanoparticles with high degradability and biocompatibility on post-cesarean wounds. J. Drug Deliv. Sci. Technol. (2021). https://doi.org/10.1016/j.jddst.2021.102631

    Article  PubMed  PubMed Central  Google Scholar 

  13. R.S. Ambekar, B. Kandasubramanian, Advancements in nanofibers for wound dressing: a review. Eur. Polym. J. (2019). https://doi.org/10.1016/j.eurpolymj.2019.05.020

    Article  Google Scholar 

  14. D. Simões, S.P. Miguel, M.P. Ribeiro, P. Coutinho, A.G. Mendonça, I.J. Correia, Recent advances on antimicrobial wound dressing: a review. Eur. J. Pharm. Biopharm. (2018). https://doi.org/10.1016/j.ejpb.2018.02.022

    Article  PubMed  Google Scholar 

  15. S. Alven, X. Nqoro, B.A. Aderibigbe, Polymer-based materials loaded with curcumin for wound healing applications. Polymers (Basel) (2020). https://doi.org/10.3390/polym12102286

    Article  PubMed  Google Scholar 

  16. M. Khamrai, S.L. Banerjee, P.P. Kundu, Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application. Carbohydr. Polym. (2017). https://doi.org/10.1016/j.carbpol.2017.06.094

    Article  PubMed  Google Scholar 

  17. Y. Zhang, J. Yang, Design strategies for fluorescent biodegradable polymeric biomaterials. J. Mater. Chem. B (2013). https://doi.org/10.1039/c2tb00071g

    Article  PubMed  PubMed Central  Google Scholar 

  18. R. Song, M. Murphy, C. Li, K. Ting, C. Soo, Z. Zheng, Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Dev. Ther. (2018). https://doi.org/10.2147/DDDT.S165440

    Article  Google Scholar 

  19. S.C. Lenaghan, K. Serpersu, L. **a, W. He, M. Zhang, A naturally occurring nanomaterial from the Sundew (Drosera) for tissue engineering. Bioinspir. Biomim. (2011). https://doi.org/10.1088/1748-3182/6/4/046009

    Article  PubMed  Google Scholar 

  20. Y. Huang, Y.J. Wang, Y. Wang, S. Yi, Z. Fan, L. Sun et al., Exploring naturally occurring ivy nanoparticles as an alternative biomaterial. Acta Biomater. (2015). https://doi.org/10.1016/j.actbio.2015.07.035

    Article  PubMed  PubMed Central  Google Scholar 

  21. H. Park, B. Choi, J. Hu, M. Lee, Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. (2013). https://doi.org/10.1016/j.actbio.2012.08.033

    Article  PubMed  Google Scholar 

  22. N. Singh, A. Tiwari, R. Kesharwani, D.K. Patel, Pharmaceutical polymer in drug delivery: a review. Res. J. Pharm. Technol. (2016). https://doi.org/10.5958/0974-360X.2016.00188.8

    Article  Google Scholar 

  23. D.K. Patel, R. Kesharwani, S. Tripathy, S.N. Singh, V. Kumar, Surgical nanomaterials for spinal deformities, in Functional Nanomaterials for Regenerative Tissue Medicines (2021)https://doi.org/10.1201/9781003140108-14

  24. S. Tripathy, D.K. Patel, R. Kesharwani, V. Kumar, Peptide-based functional nanomaterials for soft-tissue repair, in Functional Nanomaterials for Regenerative Tissue Medicines (2021).https://doi.org/10.1201/9781003140108-5

  25. L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. (Oxford) (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  Google Scholar 

  26. I.N. Vikhareva, E.A. Buylova, G.U. Yarmuhametova, G.K. Aminova, A.K. Mazitova, An overview of the main trends in the creation of biodegradable polymer materials. J. Chem. (2021). https://doi.org/10.1155/2021/5099705

    Article  Google Scholar 

  27. E. Pişkin, Review biodegradable polymers as biomaterials. J. Biomater. Sci. Polym. Ed. (1995). https://doi.org/10.1163/156856295X00175

    Article  PubMed  Google Scholar 

  28. Y. Tabata, S. Lonikar, F. Horii, Y. Ikada, Immobilization of collagen onto polymer surfaces having hydroxyl groups. Biomaterials (1986). https://doi.org/10.1016/0142-9612(86)90110-9

    Article  PubMed  Google Scholar 

  29. C. Wei, Y. Feng, D. Che, J. Zhang, X. Zhou, Y. Shi et al., Biomaterials in skin tissue engineering. Int. J. Polym. Mater. Polym. Biomater. (2021). https://doi.org/10.1080/00914037.2021.1933977

    Article  Google Scholar 

  30. S. Böttcher-Haberzeth, T. Biedermann, E. Reichmann, Tissue engineering of skin. Burns (2010). https://doi.org/10.1016/j.burns.2009.08.016

    Article  PubMed  Google Scholar 

  31. F. Vin, L. Teot, S. Meaume, The healing properties of Promogran in venous leg ulcers. J. Wound Care (2002). https://doi.org/10.12968/jowc.2002.11.9.26438

    Article  PubMed  Google Scholar 

  32. S. Domenek, P. Feuilloley, J. Gratraud, M.H. Morel, S. Guilbert, Biodegradability of wheat gluten based bioplastics. Chemosphere (2004). https://doi.org/10.1016/S0045-6535(03)00760-4

    Article  PubMed  Google Scholar 

  33. A. Jerez, P. Partal, I. Martínez, C. Gallegos, A. Guerrero, Rheology and processing of gluten based bioplastics. Biochem. Eng. J. (2005). https://doi.org/10.1016/j.bej.2005.04.010

    Article  Google Scholar 

  34. N. Patni, P. Yadava, A. Agarwal, V. Maroo, An overview on the role of wheat gluten as a viable substitute for biodegradable plastics. Rev. Chem. Eng. (2014). https://doi.org/10.1515/revce-2013-0039

    Article  Google Scholar 

  35. I.Y. Kim, S.J. Seo, H.S. Moon, M.K. Yoo, I.Y. Park, B.C. Kim et al., Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. (2008). https://doi.org/10.1016/j.biotechadv.2007.07.009

    Article  PubMed  Google Scholar 

  36. M.N.V.R. Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. (2004). https://doi.org/10.1021/cr030441b

    Article  PubMed  Google Scholar 

  37. B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci. B (2011). https://doi.org/10.1002/polb.22259

    Article  Google Scholar 

  38. International Journal of Biological Macromolecules, Polymer (Guildf) (1978). https://doi.org/10.1016/0032-3861(78)90325-7

    Article  Google Scholar 

  39. R. Ansari, S.M. Sadati, N. Mozafari, H. Ashrafi, A. Azadi, Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders. Eur. Polym. J. (2020). https://doi.org/10.1016/j.eurpolymj.2020.109607

    Article  Google Scholar 

  40. W.L. Teng, E. Khor, T.K. Tan, L.Y. Lim, S.C. Tan, Concurrent production of chitin from shrimp shells and fungi. Carbohydr. Res. (2001). https://doi.org/10.1016/S0008-6215(01)00084-2

    Article  PubMed  Google Scholar 

  41. J.Y. Je, S.K. Kim, Antioxidant activity of novel chitin derivative. Bioorg. Med. Chem. Lett. (2006). https://doi.org/10.1016/j.bmcl.2005.12.077

    Article  PubMed  Google Scholar 

  42. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, S. Ramakrishna, Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng. A (2009). https://doi.org/10.1089/ten.tea.2008.0689

    Article  Google Scholar 

  43. Y. Gou, D. Miao, M. Zhou, L. Wang, H. Zhou, G. Su, Bio-inspired protein-based nanoformulations for cancer theranostics. Front. Pharmacol. (2018). https://doi.org/10.3389/fphar.2018.00421

    Article  PubMed  PubMed Central  Google Scholar 

  44. M.C. Gómez-Guillén, M. Pérez-Mateos, J. Gómez-Estaca, E. López-Caballero, B. Giménez, P. Montero, Fish gelatin: a renewable material for develo** active biodegradable films. Trends Food Sci. Technol. (2009). https://doi.org/10.1016/j.tifs.2008.10.002

    Article  Google Scholar 

  45. Y. Ikada, Surface modification of polymers for medical applications. Biomaterials (1994). https://doi.org/10.1016/0142-9612(94)90025-6

    Article  PubMed  Google Scholar 

  46. B.K. Kim, J.W. Seo, H.M. Jeong, Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. (2003). https://doi.org/10.1016/S0014-3057(02)00173-8

    Article  Google Scholar 

  47. J. Simon, H.P. Müller, R. Koch, V. Müller, Thermoplastic and biodegradable polymers of cellulose. Polym. Degrad. Stab. (1998). https://doi.org/10.1016/s0141-3910(97)00151-1

    Article  Google Scholar 

  48. F. Khan, M. Tanaka, S.R. Ahmad, Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J. Mater. Chem. B (2015). https://doi.org/10.1039/c5tb01370d

    Article  PubMed  Google Scholar 

  49. M. Okada, Chemical syntheses of biodegradable polymers. Progr. Polym. Sci. (Oxford) (2002). https://doi.org/10.1016/S0079-6700(01)00039-9

    Article  Google Scholar 

  50. D. Briassoulis, An overview on the mechanical behaviour of biodegradable agricultural films. J. Polym. Environ. (2004). https://doi.org/10.1023/B:JOOE.0000010052.86786.ef

    Article  Google Scholar 

  51. A. Södergård, M. Stolt, Properties of lactic acid based polymers and their correlation with composition. Progress Polym. Sci. (Oxford) (2002). https://doi.org/10.1016/S0079-6700(02)00012-6

    Article  Google Scholar 

  52. S. Jacobsen, H.G. Fritz, Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym. Eng. Sci. (1999). https://doi.org/10.1002/pen.11517

    Article  Google Scholar 

  53. R. Kesharwani, S. Tripathy, D.K. Patel, P.K. Yadav, M.K. Das, Multifunctional micellar nanomedicine for cancer therapy. Multifunct. Theranostic Nanomed. Cancer (2021). https://doi.org/10.1016/b978-0-12-821712-2.00018-9

    Article  Google Scholar 

  54. S. Tripathy, D.K. Patel, R. Kesharwani, M.K. Das, Nanoparticle-based radio immune therapy in cancer care, in Multifunctional Theranostic Nanomedicines in Cancer (2021).https://doi.org/10.1016/b978-0-12-821712-2.00013-x

  55. D.K. Patel, R. Kesharwani, V Kumar, Nanoparticles: an emerging platform for medical imaging, in Nanoparticles in Analytical and Medical Devices (2021). https://doi.org/10.1016/b978-0-12-821163-2.00007-8

  56. P.G. Kulkarni, N. Paudel, S. Magar, M.F. Santilli, S. Kashyap, A.K. Baranwal, P. Zamboni, P. Vasavada, A. Katiyar, A.V. Singh, Overcoming challenges and innovations in orthopedic prosthesis design: an interdisciplinary perspective. Biomed. Mater. Dev. n.d.

  57. P. Krsko, M. Libera, Biointeractive hydrogels. Mater. Today (2005). https://doi.org/10.1016/S1369-7021(05)71223-2

    Article  Google Scholar 

  58. W.L. Murphy, K.O. Mercurius, S. Koide, M. Mrksich, Substrates for cell adhesion prepared via active site-directed immobilization of a protein domain. Langmuir (2004). https://doi.org/10.1021/la035733m

    Article  PubMed  Google Scholar 

  59. T. Juutilainen, H. Patiälä, P. Rokkanen, P. Törmälä, Biodegradable wire fixation in olecranon and patella fractures combined with biodegradable screws or plugs and compared with metallic fixation. Arch. Orthop. Trauma Surg. (1995). https://doi.org/10.1007/BF00448954

    Article  PubMed  Google Scholar 

  60. K.M. Yaqub, C. Min-Hua, A review on role of biomaterials in biomedical field. Int. J. Bio-Pharma Res. 8, 2788 (2019)

    Google Scholar 

  61. D.M. Correia, L.C. Fernandes, M.M. Fernandes, B. Hermenegildo, R.M. Meira, C. Ribeiro et al., Ionic liquid-based materials for biomedical applications. Nanomaterials (2021). https://doi.org/10.3390/nano11092401

    Article  PubMed  PubMed Central  Google Scholar 

  62. Z. Ma, W. Song, Y. He, H. Li, Multilayer injectable hydrogel system sequentially delivers bioactive substances for each wound healing stage. ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.0c06360

    Article  PubMed  PubMed Central  Google Scholar 

  63. M.C. Chen, H.W. Tsai, Y. Chang, W.Y. Lai, F.L. Mi, C.T. Liu et al., Rapidly self-expandable polymeric stents with a shape-memory property. Biomacromol (2007). https://doi.org/10.1021/bm7004615

    Article  Google Scholar 

  64. R.J. Gomes Neto, G.M. Genevro, L.A. Paulo, P.S. Lopes, M.A. de Moraes, M.M. Beppu, Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydr. Polym. (2019). https://doi.org/10.1016/j.carbpol.2019.02.017

    Article  PubMed  Google Scholar 

  65. A. Prasad, Bioabsorbable polymeric materials for biofilms and other biomedical applications: recent and future trends. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.489

    Article  Google Scholar 

  66. A.V. Singh, M. Varma, P. Laux, S. Choudhary, A.K. Datusalia, N. Gupta et al., Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch. Toxicol. (2023). https://doi.org/10.1007/s00204-023-03471-x

    Article  PubMed  PubMed Central  Google Scholar 

  67. M. Rouabhia, V. Gilbert, H. Wang, M. Subirade, In vivo evaluation of whey protein-based biofilms as scaffolds for cutaneous cell cultures and biomedical applications. Biomed. Mater. (2007). https://doi.org/10.1088/1748-6041/2/1/S06

    Article  PubMed  Google Scholar 

  68. S. Simeonova, M. Evstatiev, W. Li, T. Burkhart, Fabrication and characterization of biodegradable polymer scaffolds adapting microfibrillar composite concept. J. Polym. Sci. B (2013). https://doi.org/10.1002/polb.23332

    Article  Google Scholar 

  69. L. Allègre, I. le Teuff, S. Leprince, S. Warembourg, H. Taillades, X. Garric et al., A new bioabsorbable polymer film to prevent peritoneal adhesions validated in a postsurgical animal model. PLoS ONE (2018). https://doi.org/10.1371/journal.pone.0202285

    Article  PubMed  PubMed Central  Google Scholar 

  70. P.F. McDonald, J.G. Lyons, L.M. Geever, C.L. Higginbotham, In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(ε-caprolactone). J. Mater. Sci. (2010). https://doi.org/10.1007/s10853-009-4080-9

    Article  Google Scholar 

  71. A. Kramschuster, L.S. Turng, An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J. Biomed. Mater. Res. B (2010). https://doi.org/10.1002/jbm.b.31523

    Article  Google Scholar 

  72. H.E. Thu, M.H. Zulfakar, S.F. Ng, Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int. J Pharm. (2012). https://doi.org/10.1016/j.ijpharm.2012.05.044

    Article  PubMed  Google Scholar 

  73. P.L. Domen, J.R. Nevens, A.K. Mallia, G.T. Hermanson, D.C. Klenk, Site-directed immobilization of proteins. J. Chromatogr. A (1990). https://doi.org/10.1016/S0021-9673(01)93763-X

    Article  Google Scholar 

  74. V. Jones, J.E. Grey, K.G. Harding, Wound dressings. BMJ 332, 777 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  75. M. Rezvanian, M.C.I. Mohd Amin, S.F. Ng, Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2015.10.091

    Article  PubMed  Google Scholar 

  76. K. Peh, T. Khan, H. Ch’ng, Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. J. Pharm. Pharm. Sci. 3, 303 (2000)

    CAS  PubMed  Google Scholar 

  77. S. Dhivyaa, V.V. Padma, E. Santhini, Wound dressings—a review. Biomedicine (Taipei) (2015). https://doi.org/10.7603/s40681-015-0022-9

    Article  Google Scholar 

  78. A.V. Singh, A. Katz, R.S. Maharjan, A.K. Gadicherla, M.H. Richter, J. Heyda et al., Coronavirus-mimicking nanoparticles (CorNPs) in artificial saliva droplets and nanoaerosols: influence of shape and environmental factors on particokinetics/particle aerodynamics. Sci. Total Environ. (2023). https://doi.org/10.1016/j.scitotenv.2022.160503

    Article  PubMed  PubMed Central  Google Scholar 

  79. L. Colobatiu, A. Gavan, A.V. Potarniche, V. Rus, Z. Diaconeasa, A. Mocan et al., Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. React. Funct. Polym. (2019). https://doi.org/10.1016/j.reactfunctpolym.2019.104369

    Article  Google Scholar 

  80. S. Ryalat, R. Darwish, Amin, New form of administering chlorhexidine for treatment of denture-induced stomatitis. Ther. Clin. Risk Manag. (2011). https://doi.org/10.2147/tcrm.s18297

    Article  PubMed  PubMed Central  Google Scholar 

  81. V. Garsuch, J. Breitkreutz, Comparative investigations on different polymers for the preparation of fast-dissolving oral films. J. Pharm. Pharmacol. (2010). https://doi.org/10.1211/jpp.62.04.0018

    Article  PubMed  Google Scholar 

  82. J.A. Calles, L.I. Tártara, A. Lopez-García, Y. Diebold, S.D. Palma, E.M. Vallés, Novel bioadhesive hyaluronan-itaconic acid crosslinked films for ocular therapy. Int. J. Pharm. (2013). https://doi.org/10.1016/j.ijpharm.2013.07.063

    Article  PubMed  Google Scholar 

  83. M.D.P. Willcox, P. Argüeso, G.A. Georgiev, J.M. Holopainen, G.W. Laurie, T.J. Millar et al., TFOS DEWS II Tear Film Report. Ocular Surf. (2017). https://doi.org/10.1016/j.jtos.2017.03.006

    Article  Google Scholar 

  84. L. Cwiklik, Tear film lipid layer: a molecular level view. Biochim. Biophys. Acta. Biomembr. (2016). https://doi.org/10.1016/j.bbamem.2016.02.020

    Article  Google Scholar 

  85. R. Ranjithkumar, M.I. Mohammed, G. May, P. Jaywant, Functionalised type-I collagen as hydrogel building blocks for bio-orthogonal tissue engineering applications. Front. Bioeng. Biotechnol. (2016). https://doi.org/10.3389/conf.fbioe.2016.01.02790

    Article  Google Scholar 

  86. R. Ravichandran, M.M. Islam, E.I. Alarcon, A. Samanta, S. Wang, P. Lundström et al., Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications. J. Mater. Chem. B (2015). https://doi.org/10.1039/c5tb02035b

    Article  PubMed  Google Scholar 

  87. T. Tsukagoshi, Y. Kondo, N. Yoshino, Protein adsorption and stability of poly(ethylene oxide)-modified surfaces having hydrophobic layer between substrate and polymer. Colloids Surf. B (2007). https://doi.org/10.1016/j.colsurfb.2006.09.022

    Article  Google Scholar 

  88. S. Chen, J. Zheng, L. Li, S. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. (2005). https://doi.org/10.1021/ja054169u

    Article  PubMed  PubMed Central  Google Scholar 

  89. F. Xu, J.C. Nacker, W.C. Crone, K.S. Masters, The haemocompatibility of polyurethane-hyaluronic acid copolymers. Biomaterials (2008). https://doi.org/10.1016/j.biomaterials.2007.09.028

    Article  PubMed  PubMed Central  Google Scholar 

  90. C. Perrino, S. Lee, S.W. Choi, A. Maruyama, N.D. Spencer, A biomimetic alternative to poly(ethylene glycol) as an antifouling coating: Resistance to nonspecific protein adsorption of poly(L-lysine)-graft-dextran. Langmuir (2008). https://doi.org/10.1021/la800947z

    Article  PubMed  Google Scholar 

  91. X. Hu, P. Cebe, A.S. Weiss, F. Omenetto, D.L. Kaplan, Protein-based composite materials. Mater. Today (2012). https://doi.org/10.1016/S1369-7021(12)70091-3

    Article  Google Scholar 

  92. N.H.C.S. Silva, C. Vilela, I.M. Marrucho, C.S.R. Freire, C. Pascoal Neto, A.J.D. Silvestre, Protein-based materials: from sources to innovative sustainable materials for biomedical applications. J. Mater. Chem. B (2014). https://doi.org/10.1039/c4tb00168k

    Article  PubMed  Google Scholar 

  93. S. Shankar, J.W. Rhim, Effect of types of zinc oxide nanoparticles on structural, mechanical and antibacterial properties of poly(lactide)/poly(butylene adipate-co-terephthalate) composite films. Food Packag. Shelf Life (2019). https://doi.org/10.1016/j.fpsl.2019.100327

    Article  Google Scholar 

  94. D. Choi, J. Park, J. Heo, T.I. Oh, E. Lee, J. Hong, Multifunctional collagen and hyaluronic acid multilayer films on live mesenchymal stem cells. ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b00365

    Article  PubMed  Google Scholar 

  95. S. Park, U. Han, D. Choi, J. Hong, Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: design and applications. Biomater. Res. (2018). https://doi.org/10.1186/s40824-018-0139-5

    Article  PubMed  PubMed Central  Google Scholar 

  96. P. Asuri, S.S. Karajanagi, R.S. Kane, J.S. Dordick, Polymer-nanotube-enzyme composites as active antifouling films. Small (2007). https://doi.org/10.1002/smll.200600312

    Article  PubMed  Google Scholar 

  97. P.B. Messersmith, M. Textor, Nanomaterials: enzymes on nanotubes thwart fouling. Nat. Nanotechnol. (2007). https://doi.org/10.1038/nnano.2007.51

    Article  PubMed  Google Scholar 

  98. A. Aradmehr, V. Javanbakht, A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: synthesis and characterization. Colloids Surf. A (2020). https://doi.org/10.1016/j.colsurfa.2020.124952

    Article  Google Scholar 

  99. F. Wahid, C. Zhong, H.S. Wang, X.H. Hu, L.Q. Chu, Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers (Basel) (2017). https://doi.org/10.3390/polym9120636

    Article  PubMed  Google Scholar 

  100. A.V. Singh, V. Chandrasekar, N. Paudel, P. Laux, A. Luch, D. Gemmati, V. Tissato, K.S. Prabhu, S. Uddin, S.P. Dakua, Integrative toxicogenomics: advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed. Pharmacother. 163, 114784 (2023)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohi Kesharwani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesharwani, R., Yadav, R., Kesharwani, S. et al. Polymer Based Biofilms: Development and Clinical Application in Medical Science. Biomedical Materials & Devices 2, 275–287 (2024). https://doi.org/10.1007/s44174-023-00114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00114-8

Keywords

Navigation