Log in

Antimicrobial Properties of Carbon Nanotube: A Succinct Assessment

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) particularly single-walled carbon nanotubes (SWNT) have been used in pharmacy and medicine for drug delivery systems in therapeutics since the beginning of the twenty-first century. Because carbon nanotubes have demonstrated the ability to transport a wide range of chemicals across membranes and into living cells, they have piqued interest in medicinal applications, such as improved imaging, antimicrobial agents, tissue regeneration, and medication or gene delivery. Despite the abundance of evidence demonstrating the benefits of CNTs in terms of higher efficacy and fewer side effects, numerous recent studies have revealed unanticipated toxicities caused by CNTs. CNTs have recently gained a lot of attention for their antibacterial properties. The antimicrobial properties of carbon nanotubes, as well as their toxicity, are summarized and discussed in this mini review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Omorogbe, S. O., Aigbodion, A.I., Ifijen, H.I., Ogbeide-Ihama, N., Simo, A., Ikhuoria, E. U. (2020). Low temperature synthesis of super paramagnetic Fe3O4 morphologies tuned using oleic acid as crystal growth modifier. In book: TMS, 149th Annual Meeting & Exhib. Supplem. Proceedin. 619–631.

  2. Omorogbe S. O., Ikhuoria E.U., Igiehon L. I., Agbonlahor G.O., Ifijen I. H., Aigbodion A.I. (2017). Characterization of Sulphated Cellulose Nanocrystals as Stabilizer for Magnetite Nanoparticles Synthesis with improved Magnetic Properties. Nig. J. Mater. Sci. Eng. 7(2): 23–31.

  3. Ifijen I.H., Ikhuoria E.U., Maliki M., Otabor G.O., Aigbodion A.I. (2022) Nanostructured materials: a review on its application in water treatment. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Mater. Series. Springer, Cham. 1172–1180

  4. Ifijen I.H., Aghedo O.N., Odiachi I.J., Omorogbe S.O., Olu E.L., Onuguh I.C. (2022) Nanostructured Graphene Thin Films: A brief review of their fabrication techniques and corrosion protective performance. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Mater. Series. Springer, Cham. 366–377.

  5. Ifijen I.H., Maliki M., Omorogbe S.O., Ibrahim S.D. (2022) Incorporation of metallic nanoparticles into alkyd resin: a review of their coating performance. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Mater. Series. Springer, Cham. 338–349.

  6. Omorogbe, S.O., Ikhuoria, S.O., Ifijen, I.H., Simo, A., Aigbodion, A.I., Maaza, M. (2019). Fabrication of monodispersed needle-sized hollow core polystyrene microspheres. The Minerals, Metals & Mater Soc (ed.), TMS 2019 148th Annual Meeting & Exhib. Supplem. Proceedin. 155–164.

  7. I.H. Ifijen, E.U. Ikhuoria, Generation of highly ordered 3d vivid monochromatic coloured photonic crystal films using evaporative induced technique. Tanzania J. Sci. 45(3), 439449 (2019)

    Google Scholar 

  8. I.H. Ifijen, E.U. Ikhuoria, Monodisperse polystyrene microspheres: studies on the effects of reaction parameters on particle diameter. Tanzania J. Sci. 46(1), 19–30 (2020)

    Google Scholar 

  9. I.H. Ifijen, E.U. Ikhuoria, S.O. Omorogbe, Correlative studies on the fabrication of poly (styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J. dispersion sci. tech. 40(7), 1–8 (2018)

    Google Scholar 

  10. I.H. Ifijen, E.U. Ikhuoria, S.O. Omorogbe, A.I. Aigbodion, Ordered colloidal crystals fabrication and studies on the properties of poly (styrene-butyl acrylate-acrylic acid) and polystyrene latexes, in Nanocomposites VI: nanoscience and nanotechnology in advanced composites. The minerals, metals & mater. ed. by T. Srivatsan, M. Gupta (Series Springer, Cham, 2019), pp.155–164

    Google Scholar 

  11. I.H. Ifijen, M. Maliki, O.B. Ovonramwen, A.I. Aigbodion, E.U. Ikhuoria, Brilliant coloured monochromatic photonic crystals films generation from poly (styrene-butyl acrylate-acrylic acid) latex. J. Applied of Sci. Environ. Mgt. 23(9), 1661–1664 (2019)

    CAS  Google Scholar 

  12. I.H. Ifijen, S.O. Omorogbe, M. Maliki, I.J. Odiachi, A.I. Aigbodion, E.U. Ikhuoria, Stabilizing capability of gum Arabic on the synthesis of poly (styrene-methylmethacrylate-acrylic acid) latex for the generation of colloidal crystal films. Tanzania J. Sci. 46(2), 345–435 (2020)

    Google Scholar 

  13. S.O. Omorogbe, E.U. Ikhuoria, L.I. Igiehon, G.O. Agbonlahor, I.H. Ifijen, A.I. Aigbodion, Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties. Nigerian J. Mater. Sci. Technol. 7, 21–30 (2017)

    Google Scholar 

  14. I.H. Ifijen, M. Maliki, I.J. Odiachi, O.N. Aghedo, E.B. Ohiocheoya, Review on solvents-based alkyd resins and water borne alkyd resins: impacts of modification on their coating properties. Chem. Afri. 5, 211–225 (2022)

    Article  CAS  Google Scholar 

  15. I.H. Ifijen, E.U. Ikhuoria, A.I. Aigbodion, S.O. Omorogbe, Impact of varying the concentration of tetraethyl-orthosilicate on the average particle diameter of monodisperse colloidal silica spheres. Chem. Sci. J. 9(1), 183–185 (2018)

    Google Scholar 

  16. Ikhuoria E.U., Ifijen I.H., Georgina O.P., Ehigie A.C., Omorogbe S.O., Aigbodion A.I. (2020). The adsorption of heavy metals from aqueous solutions using silica microparticles synthesized from sodium silicate. Ni-Co 2021: The 5th Int’l. Symposium on Ni and Co. 195–205.

  17. I.H. Ifijen, A.B. Itua, M. Maliki, C.O. Ize-Iyamu, S.O. Omorogbe, A.I. Aigbodion, E.U. Ikhuoria, The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles. Heliyon 6(9), e04907 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. I.H. Ifijen, M. Maliki, A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. Nano-Metal Chem. Inorg. (2022). https://doi.org/10.1080/24701556.2022.2068596

    Article  Google Scholar 

  19. M.J. Eribe, H.I. Ikhazuagbe, E.M. Kate, I.E. Okeke, C.O. Inono, Review on the heightened mechanical features of nanosilica-based concrete and the response of human fibroblasts to nanosilica. Mater. Dev. Biomed. (2022). https://doi.org/10.1007/s44174-022-00013-4

    Article  Google Scholar 

  20. S. Salari, S.M. Jafari, Application of nanofluids for thermal processing of food products. Trends. Food Sci. Technol. 97, 100–113 (2020)

    Article  CAS  Google Scholar 

  21. Q. Su, L. Gan, J. Liu, X. Yang, Carbon dots derived from pea for specifically binding with Cryptococcus neoformans. Anal. Biochem. 589, 113476 (2020)

    Article  PubMed  Google Scholar 

  22. Abd-Elsalam, K.A. (2020). Carbon nanomaterials: 30 years of research in agroecosystems, Carbon nanomaterials for agri-food and environmental applications. Elsevier 1–18.

  23. M. Azizi-Lalabadi, H. Hashemi, J. Feng, S.M. Jafari, Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv. in Colloid Interf. Sci. 284, 102250 (2020)

    Article  CAS  Google Scholar 

  24. S.M. Dizaj, A. Mennati, S. Jafari, K. Khezri, K. Adibkia, Antimicrobial activity of carbonbased nanoparticles. Adv. Pharm. Bull. 5, 19 (2015)

    CAS  Google Scholar 

  25. H. Ji, H. Sun, X. Qu, Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv. Drug Deliv. Rev. 105, 176–189 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Chong, C. Ge, G. Fang, R. Wu, H. Zhang, Z. Chai, C. Chen, J.-J. Yin, Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ. Sci. Technol. 51, 10154–10161 (2017)

    Article  CAS  PubMed  ADS  Google Scholar 

  27. A.A.P. Khan, A. Khan, M.M. Rahman, A.M. Asiri, M. Oves, Lead sensors development and antimicrobial activities based on graphene oxide/carbon nanotube/poly (O-toluidine) nanocomposite. Int. J. Biol. Macromol. 89, 198–205 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Y.G. Maksimova, Microorganisms and carbon nanotubes: interaction and applications. Appl. Biochem. Microbiol. 55, 1–12 (2019)

    Article  CAS  Google Scholar 

  29. M.K. Mohammed, D.S. Ahmed, M.R. Mohammad, Studying antimicrobial activity of carbon nanotubes decorated with metal-doped ZnO hybrid materials. Mater. Res. Express 6, 055404 (2019)

    Article  CAS  ADS  Google Scholar 

  30. N.Q.A. Hussan, A.A. Taha, D.S. Ahmed, Characterization of treated multi-walled carbon nanotubes and antibacterial properties. J. Applied Sci. Nanotechnol. 1(2), 1–9 (2021)

    Article  Google Scholar 

  31. L. Dong, A. Henderson, C. Field, Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J. Nanotechnol. 2012, 928924 (2012)

    Article  Google Scholar 

  32. S. Aslan, M. Maatta, B.Z. Haznedaroglu, J.P.M. Goodman, L.D. Pfefferle, M. Elimelech, E. Pauthe, M. Sammalkorpi, P.R.V. Tassela, Carbon nanotube bundling: influence on layer-by-layer assembly and antimicrobial activity. Soft Matter 9, 2136 (2013)

    Article  CAS  ADS  Google Scholar 

  33. S.E. Abo-Neima, H.E. Motaweh, E.M. Elsehly, Antimicrobial activity of functionalised carbonnanotubes against pathogenicmicroorganisms. IET Nanobiotechnol. 14(6), 457–464 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  34. S. Kang, M. Herzberg, D.F. Rodrigues, M. Elimelech, Antibacterial effects of carbon nanotubes: size does matter? Langmuir 24, 6409–6413 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. C. Yang, J. Mamouni, Y. Tang, L. Yang, Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26(20), 16013–16019 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. A.W. Sloan, A.L. Santana-Pereira, J. Goswami, M.R. Liles, V.A. Davis, Single-walled carbon nanotube dispersion in tryptic soy broth. ACS Macro Lett. 6, 1228–1231 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. M.M. Noor, A.L.R. Santana-Pereira, M.R. Liles, V.A. Davis, Dispersant effects on single-walled carbon nanotube antibacterial activity. Molecules 27, 1606 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Jannati, M. Sheikhpour, S.D. Siadat, P. Safarian, Antimicrobial activity and drug delivery ability of functionalized multi-walled carbon nanotubes nanofluid on staphylococcus aureus. Nanomed. Res. J. 6(3), 248–256 (2021)

    CAS  Google Scholar 

  39. M. Hassani, A. Tahghighi, M. Rohani, M. Hekmati, M. Ahmadian, H. Ahmadvand, Robust antibacterial activityof functionalized carbon nanotube levofloxacine conjugate based on in vitro and in vivo studies. Scientific Rep. 12, 10064 (2022)

    Article  CAS  ADS  Google Scholar 

  40. L. Yan, F. Zhao, S. Li, Z. Hu, Y. Zhao, Low-toxic and safe nanomaterials by surface- chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3, 362–382 (2011)

    Article  CAS  PubMed  ADS  Google Scholar 

  41. L. Ding, J. Stilwell, T. Zhang, O. Elboudwarej, H. Jiang, J.P. Selegue, P.A. Cooke, J.W. Gray, F.F. Chen, Molecular char- acterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano- onions on human skin fibroblast. Nano Lett. 5, 2448–2464 (2005)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. M. Hussain, M. Kabir, A. Sood, On the cytotoxicity of carbon nanotubes. Curr. Sci. 96, 00113891 (2009)

    Google Scholar 

  43. X. Zhao, R. Liu, Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 40, 244–255 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. S. Vankoningsloo, J.-P. Piret, C. Saout, F. Noel, J. Mejia, C.C. Zouboulis, J. Delhalle, S. Lucas, O. Toussaint, Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: effects of sonication, dispersive agents and corneous layer of reconstructed epidermis. Nanotoxicol. 4, 84–97 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhazuagbe Hilary Ifijen.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ifijen, I.H., Omonmhenle, S.I. Antimicrobial Properties of Carbon Nanotube: A Succinct Assessment. Biomedical Materials & Devices 2, 113–120 (2024). https://doi.org/10.1007/s44174-023-00089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00089-6

Keywords

Navigation