Log in

Generalized Pentagonal Geometries-II

  • Original Research Article
  • Published:
La Matematica Aims and scope Submit manuscript

Abstract

A generalized pentagonal geometry PENT(krw) is a partial linear space, where every line is incident with k points, every point is incident with r lines, and for each point, x, the set of points not collinear with x forms the point set of a Steiner system S(2, kw) whose blocks are lines of the geometry. If \(w = k\), the structure is called a pentagonal geometry and denoted by PENT(kr). The deficiency graph of a PENT(krw) has as its vertices the points of the geometry, and there is an edge between x and y precisely when x and y are not collinear. Our primary objective is to investigate generalized pentagonal geometries PENT(krw) where the deficiency graph has girth 4. We describe some construction methods, including a procedure that preserves deficiency graph connectedness, and we prove a number of theorems regarding the existence spectra for \(k = 3\) and various values of w. In addition, we present some new PENT(4,r) (including PENT(4,25)) and PENT(5,r) with connected deficiency graphs. Consequently, we prove that there exist pentagonal geometries PENT(kr) with deficiency graphs of girth at least 5 for \(r \ge 13\), r congruent to 1 modulo 4 when \(k = 4\), and for \(r \ge 200000\), r congruent to 0 or 1 modulo 5 when \(k = 5\). We conclude with a discussion of appropriately defined identifying codes for pentagonal geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Research for our paper used no data.

References

  1. Abel, R.J.R., Colbourn, C.J., Dinitz, J.H.: Mutually Orthogonal Latin Squares (MOLS). In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 160–193. Chapman & Hall/CRC Press, Boca Raton (2007)

    Google Scholar 

  2. Adams, P., Bryant, D.E., Buchanan, M.: A survey on the existence of \(G\)-designs. J. Combin. Des. 16, 373–410 (2008)

    Article  MathSciNet  Google Scholar 

  3. Araujo-Pardo, G., Balbuena, C., Montejano, L., Valenzuela, J.C.: Partial linear spaces and identifying codes. Eur. J. Combin. 32, 344–351 (2011)

    Article  MathSciNet  Google Scholar 

  4. Ball, S., Bamberg, J., Devillers, A., Stokes, K.: An Alternative Way to Generalize the Pentagon. J. Combin. Des. 21, 163–179 (2013)

    Article  MathSciNet  Google Scholar 

  5. Brouwer, A.E., Schrijver, A., Hanani, H.: Group divisible designs with block size four. Discrete Math. 20, 1–10 (1977)

    Article  MathSciNet  Google Scholar 

  6. Colbourn, C.J., Rosa, A.: Triple Systems. Clarendon, Oxford (1999)

    Book  Google Scholar 

  7. Colbourn, C.J., Hoffman, D.G., Rees, R.S.: A new class of group divisible designs with block size three. J. Combin. Theory, Series A 59, 73–89 (1992)

    Article  MathSciNet  Google Scholar 

  8. Feit, W., Higman, G.: The nonexistence of certain generalized polygons. J. Algebra 1, 114–131 (1964)

    Article  MathSciNet  Google Scholar 

  9. Forbes, A.D., Rutherford, C.G.: Generalized pentagonal geometries, J. Combin. Des.30, 48–70 (2022) arxiv:2104.02760

  10. Forbes, A.D.: Pentagonal geometries with block sizes 3, 4 and 5, J. Combin. Des.29, 307–330 (2021) arxiv:2006.15734v3

  11. Forbes, A.D.: Group divisible designs with block size four and type \(g^u m^1\) - III. J. Combin. Des. 27, 623–700 (2019)

    Google Scholar 

  12. Forbes, A.D.: Group divisible designs with block size four and type \(g^u m^1\) - II. J. Combin. Des. 27, 311–349 (2019)

    Article  MathSciNet  Google Scholar 

  13. Forbes, A.D.: Group divisible designs with block size five. Australas. J. Combin. 87, 1–1 (2023)

    MathSciNet  Google Scholar 

  14. Forbes, A.D., Griggs, T.S., Stokes, K.: Existence results for pentagonal geometries. Australas. J. Combin. 82, 95–114 (2022)

    MathSciNet  Google Scholar 

  15. Ge, G.: Group Divisible Designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 255–260. Chapman & Hall/CRC Press, Boca Raton (2007)

    Google Scholar 

  16. Greig, M., Mullin, R.C.: PBDs: Recursive Constructions. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 236–246. Chapman & Hall/CRC Press, Boca Raton (2007)

    Google Scholar 

  17. Griggs, T.S., Stokes, K.: On pentagonal geometries with block size 3, 4 or 5. Springer Proc. Math. & Stat. 159, 147–157 (2016)

    MathSciNet  Google Scholar 

  18. Hanani, H.: The existence and construction of balanced incomplete block designs. Ann. Math. Statist. 32, 361–386 (1961)

    Article  MathSciNet  Google Scholar 

  19. Hoffman, A.J., Singleton, R.R.: On Moore Graphs with Diameters 2 and 3. IBM J. Res. Dev. 4, 497–504 (1960)

    Article  MathSciNet  Google Scholar 

  20. Karpovsky, M.G., Chakrabarty, K.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Inform. Theory 44, 599–611 (1998)

    Article  MathSciNet  Google Scholar 

  21. Kirkman, T.P.: On a Problem in Combinatorics. Cambridge & Dublin Math. J. 2, 191–204 (1847)

    Google Scholar 

  22. Laifenfeld, M., Trachtenberg, A.: Identifying codes and covering problems. IEEE Trans. Inform. Theory 54, 3929–3950 (2008)

    Article  MathSciNet  Google Scholar 

  23. Stinson, D.R.: Hill-climbing algorithms for the construction of combinatorial designs. Ann. Discrete Math. 26, 321–334 (1985)

    Article  MathSciNet  Google Scholar 

  24. Tits, J.: Sur la trialité et certains groupes qui s’en déduisent. Inst. Hautes Etudes Sci. Publ. Math. 2, 14–60 (1959)

    Article  Google Scholar 

  25. Wei, H., Ge, G.: Some more 5-GDDs, 4-frames and 4-RGDDs. Discrete Mathematics 336, 7–21 (2014)

    Article  MathSciNet  Google Scholar 

  26. Wilson, R.M.: An existence theory for pairwise balanced designs I: Composition theorems and morphisms. J. Combin. Theory Ser. A 13, 220–245 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Forbes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbes, A.D., Rutherford, C.G. Generalized Pentagonal Geometries-II. La Matematica (2024). https://doi.org/10.1007/s44007-024-00118-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44007-024-00118-w

Keywords

Mathematics Subject Classification

Navigation