Log in

From artificial intelligence to semi-creative inorganic intelligence: a blockchain-based bioethical metamorphosis

  • Commentary
  • Published:
AI and Ethics Aims and scope Submit manuscript

Abstract

The label “artificial intelligence” (AI) hides a contradiction in terms, i.e. it classifies as artificial an intelligent existence whose skeleton/hardware is not carbon-based. An inorganic intelligence that springs from human intelligence experiences a different (silicon-based) but not essentially unequal tangible nature: both of them are generative/creative. Building on this observation, the paper reveals and explores its core insight, semi-creative inorganic intelligence (S-CII), which is at once a scientific policy directive and the (complex) moral condition of limited creativity that non-human intelligence should assume to avoid the human species extinction. But how to implement such a perspective? Behold a problematisation that led to a brief expedition into scientific research conceived at the human condition’s frontier, in order to delineate the dangers that gravitate a full AI. As the narrative unfolds, a bioethics-inspired solution is proposed and demonstrated: the feasibility of using blockchain as a regulatory mechanism for S-CII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No applicable.

References

  1. Sagan, C.: Carl Sagan’s Cosmic Connection. Cambridge, UK: Cambridge University Press. Available: (2000). https://ui.adsabs.harvard.edu/abs/2000cscc.book… S/abstract

  2. Nietzsche, F.: Sämtliche Werke. Kritische Studienausgabe in 15 Bänden. Walter de Gruyter/DTV, Berlin/München (1988)

    Google Scholar 

  3. Strubell, E., Ganesh, A., McCallum, A.: Energy and Policy considerations for Deep Learning in NLP. ar**v (Preprint). (2019). https://doi.org/10.48550/ar**v.1906.02243

    Article  Google Scholar 

  4. Sworna, Z., Sreekumar, A., Islam, C., Ali Babar, M.: Security tools’ API recommendation using machine learning. Proc. 18th Int. Conf. Evaluation Novel Approaches Softw. Eng. (ENASE). 27–38 (2023). https://doi.org/10.5220/0011708300003464

  5. Mackey, T., et al.: A Framework proposal for Blockchain-Based Scientific Publishing using Shared Governance. Front. Blockchain. 2 (2019). 19https://doi.org/10.3389/fbloc.2019.00019

  6. Cellan-Jones, R.: Stephen Hawking warns artificial intelligence could end mankind. BBC News. Available: (2014). https://www.bbc.com/news/technology-30290540

  7. Ables, K.: Musk’s Neuralink implants brain chip in its first human subject. The Washington Post. Available: (2024). https://www.washingtonpost.com/business/2024/01/30/neuralink-musk-first-human-brain-chip/

  8. Neuralink Clinical Trial Brochure: PRIME Study: Precise Robotically Implanted Brain-Computer Interface. Neuralink. Available: (2024). https://neuralink.com/pdfs/PRIME-Study-Brochure.pdf

  9. Mitchell, P., Lee, S., Yoo, P., et al.: Assessment of Safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: The Stentrode with Thought-Controlled Digital switch (SWITCH) study. JAMA Neurol. 80, 270–278 (2023). https://doi.org/10.1001/jamaneurol.2022.4847

    Article  PubMed  PubMed Central  Google Scholar 

  10. Metzger, S., Liu, J., Moses, D., et al.: Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis. Nat. Commun. 13, 6510 (2022). https://doi.org/10.1038/s41467-022-33611-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drew, L.: Elon Musk’s neuralink brain chip: What scientists think of first human trial. Nature. (2024). https://doi.org/10.1038/d41586-024-00304-4

    Article  PubMed  Google Scholar 

  12. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN, 1–9. (2008). https://doi.org/10.2139/ssrn.3440802

  13. Greve, F., Sens, P., Arantes, L., Simon, V.: Eventually strong failure detector with unknown membership. Comput. J. 55, 1507–1524 (2012). https://doi.org/10.1093/comjnl/bxs084

    Article  Google Scholar 

  14. Krenn, M., Erhard, M., Zeilinger, A.: Computer-inspired quantum experiments. Nat. Rev. Phys. 2, 649–661 (2020). https://doi.org/10.1038/s42254-020-0230-4

    Article  Google Scholar 

  15. Goodenough, J., Braga, M.: Batteries for electric road vehicles. Dalton Trans. 47, 645–648 (2018). https://doi.org/10.1039/C7DT03026F

    Article  CAS  PubMed  Google Scholar 

  16. Månsson, M., et al.: Na-ion dynamics in Quasi-1D compound NaV2O4. J. Phys. Conf. Ser. 551, 012035 (2014). https://doi.org/10.1088/1742-6596/551/1/012035

    Article  Google Scholar 

  17. Kang, H.-W., Atala, A., et al.: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016). https://doi.org/10.1038/nbt.3413

    Article  CAS  PubMed  Google Scholar 

  18. Alexander, G., Hines, M.: Sex differences in response to children’s toys in nonhuman primates (Cercopithecus aethiops sabaeus). Evol. Hum. Behav. 23, 467–479 (2002). https://doi.org/10.1016/S1090-5138(02)00107-1

    Article  Google Scholar 

  19. Allen, R., Lidström, S.: Life, the Universe, and everything—42 fundamental questions. Phys. Scr. 92, 012501 (2017). https://doi.org/10.1088/0031-8949/92/1/012501

    Article  ADS  CAS  Google Scholar 

  20. The Guardian: Leonardo’s Vitruvian Man can go to the Louvre, court rules. Guardian News & Media Limited. Available: (2019). https://www.theguardian.com/artanddesign/2019/oct/16/leonardo-da-vinci-vitruvian-man-louvre-court

  21. Mauranyapin, N., Madsen, L., Taylor, M., Waleed, M., Bowen, W.: Evanescent single-molecule biosensing with quantum-limited precision. Nat. Photon. 11, 477–481 (2017). https://doi.org/10.1038/nphoton.2017.99

    Article  CAS  Google Scholar 

  22. Porter, M., Reichl, L., et al.: Chaos in the band structure of a soft Sinai lattice. Phys. Rev. E. 95, 052213 (2017). https://doi.org/10.1103/PhysRevE.95.052213

    Article  ADS  PubMed  Google Scholar 

  23. Katsnelson, M., Wolf, Y., Koonin, E.: Towards physical principles of biological evolution. Phys. Scr. 93, 043001 (2018). https://doi.org/10.1088/1402-4896/aaaba4

    Article  ADS  CAS  Google Scholar 

  24. Yasskin, P., Stoeger, W.: Propagation equations for test bodies with spin and rotation in theories of gravity with torsion. Phys. Rev. D. 21, 2081 (1980). https://doi.org/10.1103/PhysRevD.21.2081

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Coley, A.: Open problems in mathematical physics. Phys. Scr. 92, 093003 (2017). https://doi.org/10.1088/1402-4896/aa83c1

    Article  ADS  CAS  Google Scholar 

  26. Babcock, J., Kramar, J., Yampolskiy, R.: Guidelines for Artificial Intelligence Containment. ar**v. 170708476v1 (2017). https://doi.org/10.48550/ar**v.1707.08476

  27. Alexander, G., et al.: The sounds of science—a symphony for many instruments and voices. Phys. Scr. 95, 062501 (2020). https://doi.org/10.1088/1402-4896/ab7a35

    Article  ADS  CAS  Google Scholar 

  28. Kim, H., Bojar, D., Fussenegger, M.: A CRISPR/Cas9-based central processing unit to program complex logic computation in human cells. PNAS. 116, 7214–7219 (2019). https://doi.org/10.1073/pnas.1821740116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Neil, C.: Weapons of math destruction: how big data increases inequality and threatens democracy. New York: Crown. Available: (2016). https://edisciplinas.usp.br/pluginfile.php/4605464/mod_resource/content/1/%28FFLCH%29%20LIVRO%20Weapons%20of%20Math%20Destruction%20-%20Cathy%20ONeal.pdf

  30. Calice, M., Bao, L., Freiling, I., et al.: Polarized platforms? How partisanship shapes perceptions of algorithmic news bias. New. Media Soc. (2021). https://doi.org/10.1177/14614448211034159

    Article  Google Scholar 

  31. Yang, S., Krause, N., Bao, L., et al.: In AI we trust: The interplay of Media Use, political ideology, and trust in sha** emerging AI attitudes. Journalism Mass. Communication Q. (2023). https://doi.org/10.1177/10776990231190868

    Article  Google Scholar 

  32. The National Aeronautics and Space Administration: The Fifth State of Matter. NASA. Available: (2023). https://science.nasa.gov/biological-physical/stories/the-fifth-state-of-matter/

  33. Vopson, M.: Experimental protocol for testing the mass-energy-information equivalence principle. AIP Adv. 12, 035311 (2022). https://doi.org/10.1063/5.0087175

    Article  ADS  Google Scholar 

  34. Skiba, D.: The potential of blockchain in education and healthcare. Nurs. Educ. Perspect. 38, 220–221 (2017). https://doi.org/10.1097/01.NEP.0000000000000190

    Article  PubMed  Google Scholar 

  35. Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., Weinhardt, C.: A blockchain-based smart grid: Towards sustainable local energy markets. CSRD. 33, 207–214 (2017). https://doi.org/10.1007/s00450-017-0360-9

    Article  Google Scholar 

  36. Nurunnabi, M., Hossain, M.A.: Data falsification and question on academic integrity. Acc. Res. 26, 108–122 (2019). https://doi.org/10.1080/08989621.2018.1564664

    Article  Google Scholar 

  37. Chen, G., Xu, B., Lu, M., Chen, N.-S.: Exploring blockchain technology and its potential applications for education. Smart Learn. Environ. 5, 1 (2018). https://doi.org/10.1186/s40561-017-0050-x

    Article  ADS  Google Scholar 

  38. Flesher, S., et al.: A brain-computer interface that evokes tactile sensations improves robotic arm control. Science. 372, 831–836 (2021). https://doi.org/10.1126/science.abd0380

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moses, D., et al.: Neuroprosthesis for Decoding Speech in a paralyzed person with Anarthria. N Engl. J. Med. 385, 217–227 (2021). https://doi.org/10.1056/NEJMoa2027540

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gupta, A., et al.: Neuroprosthetics: From sensorimotor to cognitive disorders. Commun. Biol. 6, 14 (2023). https://doi.org/10.1038/s42003-022-04390-w

    Article  PubMed  PubMed Central  Google Scholar 

  41. Willsey, M., et al.: Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder. Nat. Commun. 13, 6899 (2022). https://doi.org/10.1038/s41467-022-34452-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, H.M., Laskowski, M.: Toward an ontology-driven blockchain design for supply-chain provenance. Intell. Syst. Acc. Finance Manage. 25, 18–27 (2018). https://doi.org/10.1002/isaf.1424

    Article  Google Scholar 

  43. Zou, W., et al.: Smart contract development: Challenges and opportunities. IEEE Trans. Softw. Eng. 47, 2084–2106 (2021). https://doi.org/10.1109/TSE.2019.2942301

    Article  Google Scholar 

  44. Kleinaki, A.S., Mytis-Gkometh, P., Drosatos, G.L., Efraimidis, P.S., Kaldoudi, E.: A blockchain-based notarization service for biomedical knowledge retrieval. Comput. Struct. Biotechnol. J. 16, 288–297 (2018). https://doi.org/10.1016/j.csbj.2018.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  45. Araújo, A.: Fundamentos de Antropologia Bioética (Foundations of Bioethical Anthropology). São Paulo: Annablume. Available: (2004). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1439102

  46. Potter, R.: Bioethics, the Science of Survival. Perspectives in Biology and Medicine. Project MUSE. 14, 127–153 (1970). https://doi.org/10.1353/pbm.1970.0015

    Article  Google Scholar 

  47. Miller, H.: Big Sur and the Oranges of Hieronymus Bosch. New York: New Directions. Available: (1957). https://books.google.to/books?id=Q4zL_kXuN4gC&printsec=frontcover&hl=it#v=onepage&q&f=false

  48. Floreano, D., et al.: From individual robots to robot societies. Sci. Robot. 6, eabk2787 (2021). https://doi.org/10.1126/scirobotics.abk2787

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thank you so much for the Editor-in-Chief’s and Reviewers’ outstanding comments.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

During the preparation of this work the author(s) Antonio Araújo reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

Corresponding author

Correspondence to Antonio Araújo.

Ethics declarations

This manuscript has not been published elsewhere and it has not been submitted simultaneously for publication elsewhere.

Ethics approval and consent to participate

No applicable.

Consent for publication

No applicable.

Competing interests

No conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, A. From artificial intelligence to semi-creative inorganic intelligence: a blockchain-based bioethical metamorphosis. AI Ethics (2024). https://doi.org/10.1007/s43681-024-00471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43681-024-00471-0

Keywords

Navigation