Log in

Primary processes in photophysics and photochemistry of a potential light-activated anti-cancer dirhodium complex

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photophysics and photochemistry of a potential light-activated cytotoxic dirhodium complex [Rh2(µ-O2CCH3)2(bpy)(dppz)](O2CCH3)2, where bpy = 2,2′-bipyridine, dppz = dipyrido[3,2-a:2′,3′-c]phenazine (Complex 1 or Rh2) in aqueous solutions was studied by means of stationary photolysis and time-resolved methods in time range from hundreds of femtoseconds to microseconds. According to the literature, Complex 1 demonstrates both oxygen-dependent (due to singlet oxygen formation) and oxygen-independent cytotoxicity. Photoexchange of an acetate ligand to a water molecule was the only observed photochemical reaction, which rate was increased by oxygen removal from solutions. Photoexcitation of Complex 1 results in the formation of the lowest triplet electronic excited state, which lifetime is less than 10 ns. This time is too short for diffusion-controlled quenching of the triplet state by dissolved oxygen resulting in 1O2 formation. We proposed that singlet oxygen is produced by photoexcitation of weakly bound van der Waals complexes [Rh2…O2], which are formed in solutions. If this is true, no oxygen-independent light-induced cytotoxicity of Complex 1 exists. Residual cytotoxicity deaerated solutions are caused by the remaining [Rh2…O2] complexes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The Supporting Information file contains NMR data and some raw data of ultrafast TA experiment as well as exact formulae for SADS extraction from the global fit results.

References

  1. Rosenberg, B., Vancamp, L., Trosko, J. E., & Mansour, V. H. (1969). Platinum compounds: A new class of potent antitumour agents. Nature, 222, 385–386. https://doi.org/10.1038/222385a0

    Article  CAS  PubMed  Google Scholar 

  2. Medici, S., Peana, M., Nurchi, V. M., Lachowicz, J. A., Crisponi, G., & Zoroddu, M. A. (2015). Noble metals in medicine: Latest advances. Coordination Chemistry Reviews, 284, 329–350. https://doi.org/10.1016/j.ccr.2014.08.002

    Article  CAS  Google Scholar 

  3. Zhang, Ch., Xu, Ch., Gao, X., & Yao, Q. (2022). Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 12(5), 2115–2132. https://doi.org/10.7150/thno.69424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonnet, S. (2018). Why develo** PhotoActivated chemotherapy? Dalton Transactions, 47(31), 10330–10343. https://doi.org/10.1039/C8DT01585F

    Article  CAS  PubMed  Google Scholar 

  5. Brown, S. B., Linnell, E. R. H., Brown, A., & Walker, I. (2004). The present and future role of photodynamic therapy in cancer treatment. Lancet Oncology, 5(8), 497–508. https://doi.org/10.1016/s1470-2045(04)01529-3

    Article  CAS  PubMed  Google Scholar 

  6. Szacilowski, K., Macyk, W., Drzewiecka-Matusek, A., Brindell, M., & Stochel, G. (2005). Bioinorganic photochemistry: Frontiers and mechanisms. Chemical Reviews, 105(6), 2647–2694. https://doi.org/10.1021/cr030707e

    Article  CAS  PubMed  Google Scholar 

  7. Bednarski, P. J., Mackay, F. S., & Sadler, P. J. (2007). Photoactivatable platinum complexes. Anti-Cancer Agents in Medicinal Chemistry, 7(1), 75–93. https://doi.org/10.2174/187152007779314053

    Article  CAS  PubMed  Google Scholar 

  8. Ronconi, L., & Sadler, P. J. (2007). Using coordination chemistry to design new medicines. Coordination Chemistry Reviews, 251(13–14), 1633–1647. https://doi.org/10.1016/j.ccr.2006.11.017

    Article  CAS  Google Scholar 

  9. Farrer, N. J., & Sadler, P. J. (2008). Photochemotherapy: Targeted activation of metal anticancer complexes. Australian Journal of Cheimstry, 61(9), 669–674. https://doi.org/10.1071/CH08088

    Article  CAS  Google Scholar 

  10. Smith, N. A., & Sadler, P. J. (2013). Photoactivatable metal complexes: From theory to applications in biotechnology and medicine. Philosophical Transactions of the Royal Society A, 371, 20120519. https://doi.org/10.1098/rsta.2012.0519

    Article  CAS  Google Scholar 

  11. Farrer, N. J., Salassa, L., & Sadler, P. J. (2009). Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Transactions. https://doi.org/10.1039/B917753A

    Article  PubMed  Google Scholar 

  12. Knoll, J. D., & Turro, C. (2015). Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coordination Chemistry Reviews, 282–283, 110–126. https://doi.org/10.1016/j.ccr.2014.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnstone, T. C., Suntharalingam, K., & Lippard, S. J. (2016). The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chemical Reviews, 116(5), 3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gurruchaga-Pereda, V. J., Martínez, A., Terenzi, A., & Salassa, L. (2019). Anticancer platinum agents and light. Inorganica Chimica Acta, 495, 118981. https://doi.org/10.1016/j.ica.2019.118981

    Article  CAS  Google Scholar 

  15. Monro, S., Colon, K. L., Yin, H., Roque, J., III., Konda, P., Gujar, S. H., Hummel, R. P., Lilge, T. L., Cameron, C. G., & McFarland, S. H. A. (2019). Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chemical Reviews, 19, 797–828.

    Article  Google Scholar 

  16. Harris, A. L. (2002). Hypoxia—A key regulatory factor in tumor growth. Nature Reviews Cancer, 2, 38–47. https://doi.org/10.1038/nrc704

    Article  CAS  PubMed  Google Scholar 

  17. Holder, A. A., Swavey, Sh., & Brewer, K. (2004). Design aspects for the development of mixed-metal supramolecular complexes capable of visible light induced photocleavage of DNA. Inorganic Chemistry, 43(1), 303–308. https://doi.org/10.1021/ic035029t

    Article  CAS  PubMed  Google Scholar 

  18. Wang, J., Higgins, S. L. H., Winkel, B. S. J., & Brewer, K. J. (2011). A new Os, Rh bimetallic with O2 independent DNA cleavage and DNA photobinding with red therapeutic light excitation. Chemical Communications, 47, 9786–9788. https://doi.org/10.1039/C1CC11562F

    Article  CAS  PubMed  Google Scholar 

  19. Wang, J., Zigler, D. F., Hurst, N., Othee, H., Winkel, B. S. J., & Brewer, K. J. (2012). A new, bioactive structural motif: Visible light induced DNA photobinding and oxygen independent photocleavage by RuII, RhIII bimetallics. Journal of Inorganic Biochemistry, 116, 135–139. https://doi.org/10.1016/j.**orgbio.2012.06.015

    Article  CAS  PubMed  Google Scholar 

  20. Wang, J., Newman, J., Higgins, S. L., Brewer, K. M., Winkel, B. S., & Brewer, K. J. (2013). Red-light-induced inhibition of DNA replication and amplification by PCR with an Os/Rh supramolecule. Angewandte Chemie International Edition, 52(4), 1262–1265. https://doi.org/10.1002/anie.201207083

    Article  CAS  PubMed  Google Scholar 

  21. Angeles-Boza, A. M., Bradley, P. M., Fu, P.K.-L., Wicke, S. E., Bacsa, J., Dunbar, K. R., & Turro, C. (2004). DNA binding and photocleavage in vitro by new dirhodium(II) dppz complexes: Correlation to cytotoxicity and photocytotoxicity. Inorganic Chemistry, 43(26), 8510–8519. https://doi.org/10.1021/ic049091h

    Article  CAS  PubMed  Google Scholar 

  22. Angeles-Boza, A. M., Bradley, P. M., Fu, P.K.-L., Shatruk, M., Hilfiger, M. G., Dunbar, K. R., & Turro, C. (2005). Photocytotoxicity of a new Rh2(II, II) complex: Increase in cytotoxicity upon irradiation similar to that of PDT agent hematoporphyrin. Inorganic Chemistry, 44(21), 7262–7264. https://doi.org/10.1021/ic0500715

    Article  CAS  PubMed  Google Scholar 

  23. Lutterman, D. A., Fu, P.K.-L., & Turro, C. (2006). cis-[Rh2(µ-O2CCH3)2(CH3CN)6]2+ as a photoactivated cisplatin analog. Journal of American Chemical Society, 128(3), 738–739. https://doi.org/10.1021/ja057620q

    Article  CAS  Google Scholar 

  24. Angeles-Boza, A. M., Chifotides, H. T., Aguirre, J. D., Chouai, A., Fu, P.K.-L., Dunbar, K. R., & Turro, C. (2006). Dirhodium(II, II) complexes: Molecular characteristics that affect in vitro activity. Journal of Medical Chemistry, 49(23), 6841. https://doi.org/10.1021/jm060592h

    Article  CAS  Google Scholar 

  25. Aguirre, J. D., Angeles-Boza, A. M., Chouai, A., Turro, C., Pellois, J.-P., & Dunbar, K. R. (2009). Anticancer activity of heteroleptic diimine complexes of dirhodium: A study of intercalating properties, hydrophobicity and in cellulo activity. Dalton Transactions. https://doi.org/10.1039/B915357H

    Article  PubMed  Google Scholar 

  26. Joyce, L. E., Aguirre, J. D., Angeles-Boza, A. M., Chouai, A., Fu, P.K.-L., Dunbar, K. R., & Turro, C. (2010). Photophysical properties, DNA photocleavage, and photocytotoxicity of a series of dppn dirhodium(II, II) complexes. Inorganic Chemistry, 49(12), 5371–5376. https://doi.org/10.1021/ic100588d

    Article  CAS  PubMed  Google Scholar 

  27. Li, Z., Burya, S. J., Turro, C., & Dunbar, K. R. (2013). Photochemistry and DNA photocleavage by a new unsupported dirhodium(II, II) complex. Philosophical Transactions of the Royal Society A., 371, 20120128. https://doi.org/10.1098/rsta.2012.0128

    Article  CAS  Google Scholar 

  28. Lin, S. H., & Turro, C. (2021). dirhodium complexes as panchromatic sensitizers, electrocatalysts, and photocatalysts. Chemistry: A European Journal, 27(17), 5379–5387. https://doi.org/10.1002/chem.202003950

    Article  CAS  PubMed  Google Scholar 

  29. Shushakov, A. A., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Zadesenets, A. V., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2017). Primary photochemical processes for Pt(IV) diazido complexes prospective in photodynamic therapy of tumors. Dalton Transactions, 46(29), 9440–9450. https://doi.org/10.1039/C7DT01529A

    Article  CAS  PubMed  Google Scholar 

  30. Vernooij, R. R., Joshi, T., Horbury, M. D., Graham, B., izgorodina, E. I., stavros, vg, sadler, pj, spiccia, l, & wood, br. (2018). spectroscopic studies on photoinduced reactions of the anticancer prodrug, trans, trans, trans-[Pt(N3)2(OH)2(py)2]. Chemistry: A European Journal, 24(22), 5790–5803. https://doi.org/10.1002/chem.201800161

    Article  CAS  PubMed  Google Scholar 

  31. Zhdankin, G. I., Grivin, V. P., Plyusnin, V. F., Tkachenko, P. A., Vasilchenko, D. B., & Glebov, E. M. (2023). Chain photosolvation of trans, trans, trans-[PtIV(py)2(N3)2(OH)2] complex prospective as light-activated antitumor agent. Mendeleev Communications, 33(1), 61–63. https://doi.org/10.1016/j.mencom.2023.01.019

    Article  CAS  Google Scholar 

  32. Matveeva, S. G., Shushakov, A. A., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Zadesenets, A. V., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2018). cis, fac-[RuCl2(DMSO)3(H2O)] complex exhibits ultrafast photochemical aquation/rearrangement. Photochemical & Photobiological Sciences, 17(9), 1222–1228. https://doi.org/10.1039/C8PP00232K

    Article  CAS  Google Scholar 

  33. Shushakov, A. A., Matveeva, S. G., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2020). Mechanistic study of the trans, cis, cis-[RuCl2(DMSO)2(H2O)2] complex photochemistry in aqueous solutions. Photochemical & Photobiological Sciences, 19(9), 1222–1229. https://doi.org/10.1039/D0PP00178C

    Article  CAS  Google Scholar 

  34. Glebov, E. M., Grivin, V. P., Vasilchenko, D. B., Zadesenets, A. V., & Plyusnin, V. F. (2017). Two-quantum photochemistry of the complex cis, trans-[PtIV(en)(I)2(CH3COO)2]. High Energy Chemistry, 51(6), 409–414. https://doi.org/10.1134/S0018143917060078

    Article  CAS  Google Scholar 

  35. Glebov, E. M., Pozdnyakov, I. P., Vasilchenko, D. B., Zadesenets, A. V., Melnikov, A. A., Magin, I. M., Grivin, V. P., Chekalin, S. V., & Plyusnin, V. F. (2018). Photochemistry of cis, trans-[PtIV(en)(I)2(OH)2] complex in aqueous solutions. Journal of Photochemistry & Photobiology A: Chemistry, 354, 78–85. https://doi.org/10.1016/j.jphotochem.2017.06.036

    Article  CAS  Google Scholar 

  36. Glebov, E. M., Pozdnyakov, I. P., Magin, I. M., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Zadesenets, A. V., Melnikov, A. A., & Chekalin, S. V. (2019). Photochemistry of -[PtIV(en)(I)2(CH3COO)2] complex in aqueous solutions. Russian Chemical Bulletin, 68(8), 1532–1541. https://doi.org/10.1007/s11172-019-2588-y

    Article  CAS  Google Scholar 

  37. Sosnin, E., Oppenlander, T., & Tarasenko, V. (2006). Applications of capacitive and barrier discharge excilamps in photoscience. Journal of Photochemistry & Photobiology C: Photochemical Reviews, 7(4), 145–163. https://doi.org/10.1016/j.jphotochemrev.2006.12.002

    Article  CAS  Google Scholar 

  38. Glebov, E. M., Grivin, V. P., Plyusnin, V. F., Fedunov, R. G., Pozdnyakov, I. P., Yanshole, V. V., & Vasilchenko, D. B. (2021). Photochemistry of cerium ammonium nitrate (CAN) in acetonitrile. Journal of Photochemistry & Photobiology A Chemistry, 418, 113440. https://doi.org/10.1016/j.jphotochem.2021.113440

    Article  CAS  Google Scholar 

  39. Chekalin, S. V. (2006). The unique femtosecond spectrometric complex as an instrument for ultrafast spectroscopy, femtochemistry, and nanooptics. Physics-Uspekh, 49(6), 634–641. https://doi.org/10.1070/PU2006v049n06ABEH006044

    Article  CAS  Google Scholar 

  40. Glebov, E. M., Pozdnyakov, I. P., Chernetsov, V. P., Grivin, V. P., Venediktov, A. B., Melnikov, A. A., Chekalin, S. V., & Plyusnin, V. F. (2017). Primary photophysical and photochemical processes for Pt(SCN)62- complex. Russian Chemical Bulletin, 66(3), 418–425. https://doi.org/10.1007/s11172-017-1749-0

    Article  CAS  Google Scholar 

  41. Tkachenko, N.V. (2006). Optical spectroscopy: methods and instrumentations, Elsevier.

  42. Linnell, R. H., & Kaczmarczyk, A. (1961). Ultraviolet spectra of –N=C–C=N– compounds. Journal of Physical Chemistry, 65(7), 1196–1200. https://doi.org/10.1021/j100825a025

    Article  CAS  Google Scholar 

  43. McGovern, D. A., Selmi, A., O’Brien, J. E., Kelly, J. M., & Long, C. (2005). Reduction of dipyrido-[3,2-a:2′,3′-c]-phenazine (dppz) by photolysis in ethanol solution. Chemical Communications. https://doi.org/10.1039/B415471A

    Article  PubMed  Google Scholar 

  44. Glebov, E. M., Bakulina, O. D., Shushakov, A. A., Matveeva, S. G., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Melnikov, A. A., & Chekalin, S. V. (2020). Triplet state of dipyrido[3,2-a:2′,3′-c]phenazine: Formation and decay. Mendeleev Communications, 30, 322–324. https://doi.org/10.1016/j.mencom.2020.05.021

    Article  CAS  Google Scholar 

  45. Menon, E. L., Perera, R., Navarro, M., Kuhn, R. J., & Morrison, H. (2004). Phototoxicity against tumor cells and sindbis virus by an octahedral rhodium bisbipyridyl complex and evidence for the genome as a target in viral photoinactivation. Inorganic Chemistry, 43(17), 5373–5381. https://doi.org/10.1021/ic0498586

    Article  CAS  PubMed  Google Scholar 

  46. Rury, A. S., & Sension, R. J. (2013). Broadband ultrafast transient absorption of iron (III) tetraphenylporphyrin chloride in the condensed phase. Chemical Physics, 422, 220–228. https://doi.org/10.1016/j.chemphys.2013.01.025

    Article  CAS  Google Scholar 

  47. Vlcek, A., Jr. (2000). The life and times of excited states of organometallic and coordination compounds. Coordination Chemistry Reviews, 200–202, 933–977. https://doi.org/10.1016/S0010-8545(00)00308-8

    Article  Google Scholar 

  48. McCusker, J. K. (2003). Femtosecond absorption spectroscopy of transition metal charge-transfer complexes. Accounts of Chemical Research, 36(11), 876–887. https://doi.org/10.1021/ar030111d

    Article  CAS  PubMed  Google Scholar 

  49. Glebov, E. M. (2022). Femtochemistry methods for studying the photophysics and photochemistry of halide complexes of platinum metals. Russian Chemical Bulletin, 71(5), 858–877. https://doi.org/10.1007/s11172-022-3486-2

    Article  CAS  Google Scholar 

  50. Entelis, C.G., Tiger, R.P. (1973). Kinetika reaktsii v rastvorakh. Kolichestvennyi uchet vliyaniya sredy (Reaction Kinetics in Solitions: Quantification of Solvent Effect), Moscow, Khimiya.

  51. Glebov, E. M., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Zhang, X. F., Wu, F., & Deng, N. (2011). Intermediates in photochemistry of Fe(III) complexes with carboxylic acids in aqueous solutions. Photochemical & Photobiological Sciences, 10(3), 425–430. https://doi.org/10.1039/c0pp00151a

    Article  CAS  Google Scholar 

  52. DeBoer, G., & Young, M. A. (1997). Photochemistry and dynamics of C6H6–O2C6H6–O2 clusters at 226 nm. The Journal of Chemical Physics, 106(13), 5468–5477. https://doi.org/10.1063/1.473571

    Article  CAS  Google Scholar 

  53. Parsons, B. F., & Chandler, D. W. (2003). On the dissociation of van der Waals clusters of X2−Cyclohexane (X = O, Cl) following charge-transfer excitation in the ultraviolet. Journal of Physical Chemistry A, 107(49), 10544–10553. https://doi.org/10.1021/jp0301150

    Article  CAS  Google Scholar 

  54. Baklanov, A. V., Bogdanchikov, G. A., Vidma, K. V., Chestakov, D. A., & Parker, D. H. (2007). Cluster-enhanced X-O2 photochemistry (⁠X = CH3I, C3H6, C6H12⁠, and Xe). The Journal of Chemical Physics, 126, 124316. https://doi.org/10.1063/1.2710268

    Article  CAS  PubMed  Google Scholar 

  55. Baklanov, A. V., & Parker, D. H. (2020). Weakly bound environment of molecular oxygen as a catalyst of photooxidation. Kinetics & Catalysis, 61(2), 174–197. https://doi.org/10.1134/S0023158420020019

    Article  CAS  Google Scholar 

  56. Scurlock, R. D., & Ogilby, P. R. (1989). Singlet molecular oxygen (1ΔgO2) formation upon irradiation of an oxygen (3ΣgO2)—Organic molecule charge-transfer absorption band. Journal of Physical Chemistry, 93(14), 5493–5500. https://doi.org/10.1021/j100351a035

    Article  CAS  Google Scholar 

  57. Glebov, E. M., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Isaeva, E. A., & Egorov, N. B. (2022). Photochemistry of sodium thiosulfate in aqueous solutions revisited. Journal of Photochemistry & Photobiology A: Chemistry, 427, 113818. https://doi.org/10.1016/j.jphotochem.2022.113818

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Russian Science Foundation (Grant No. 22-23-00248) is gratefully acknowledged. Sergei V. Chekalin acknowledges funding by the research project FFUU-2022-0004 of the Institute of Spectroscopy of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeni M. Glebov.

Ethics declarations

Conflict of interest

The authors declare that they have are no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 353 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semionova, V.V., Pozdnyakov, I.P., Grivin, V.P. et al. Primary processes in photophysics and photochemistry of a potential light-activated anti-cancer dirhodium complex. Photochem Photobiol Sci 23, 153–162 (2024). https://doi.org/10.1007/s43630-023-00509-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00509-y

Keywords

Navigation