Log in

Substituent effects on the UV–visible spectrum and excited electronic states of dithiocarboxylates

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The absorption spectra of a series of dithiocarboxylates were investigated in the ultraviolet–visible region. Two questions that this study aimed to address were as follows: (1) What transitions give rise to the features in the electronic spectra? And (2) what are the long- and short-range substituent effects on the absorption spectra? A series of 11 dithiocarboxylates were prepared as organic soluble salts. Time-dependent density functional theory (TDDFT) was used to calculate excited state energies and oscillator strengths of electronic transitions. TDDFT at the CAM-B3LYP/def2-TZVPD level of theory predicts two low-energy n → π* transitions and two π → π* transitions at higher energy, consistent with the experimental spectra. This state ordering and density is in contrast to the better studied thiocarbonyls for which only two transitions within the singlet manifold appear in the UV–visible region. For derivatives of dithiobenzoate, the energy of the three lowest energy states are insensitive to changes to substituents para to the dithiocarboxylate group. In contrast, the energy of the highest ππ* state varies by 0.78 eV. This work shows that the results of TDDFT calculations can be used to predict the electronic absorption spectra of dithiocarboxylates, providing a useful tool for designing dithiocarboxylate light absorbers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

The data used for this study are presented in the manuscript and supporting information.

Code availability

All software used in herein is publicly available from the cited publishers.

References

  1. Turro, N. J., Ramamurthy, V., & Scaiano, J.C. (2010). Molecular Photochemistry of Organic Molecules (2nd ed.) University Science Books: Sausalito, CA.

  2. Coyle, J. D. (1985). The photochemistry of thiocarbonyl compounds. Tetrahedron, 41, 5393–5425. https://doi.org/10.1016/S0040-4020(01)91341-9

    Article  CAS  Google Scholar 

  3. Steer, R. P., & Ramamurthy, V. (1988). Photophysics and intramolecular photochemistry of thiones in solution. Accounts of Chemical Research, 21, 380–386. https://doi.org/10.1021/ar00154a005

    Article  CAS  Google Scholar 

  4. Clouthier, D. J., & Moule, D. C. (1989). Periodic group relationships in the spectroscopy of the carbonyls, ketenes and nitriles: the effect of substitution by sulfur, selenium, and phosphorus. Topics in Current Chemistry, 150, 167–247. https://doi.org/10.1007/BFb0111261

    Article  CAS  Google Scholar 

  5. Jacquemin, D., Wathelet, V., & Perpète, E. A. (2006). Ab initio investigation of the n →π* transitions in thiocarbonyl dyes. Journal of Physical Chemistry A, 110, 9145–9152. https://doi.org/10.1021/jp062580d

    Article  CAS  Google Scholar 

  6. Maciejewski, A., & Steer, R. P. (1993). The photophysics, physical photochemistry, and related spectroscopy of thiocarbonyls. Chemical Reviews, 93, 67–98. https://doi.org/10.1021/cr00017a005

    Article  CAS  Google Scholar 

  7. Kasha, M. (1950). Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society, 9, 14–19. https://doi.org/10.1039/DF9500900014

    Article  Google Scholar 

  8. Hui, M. H., De Mayo, P., Suau, R., & Ware, W. R. (1975). Thione photochemistry: fluorescence from higher excited states. Chemical Physics Letters, 31, 257–263. https://doi.org/10.1016/0009-2614(75)85016-0

    Article  CAS  Google Scholar 

  9. Korver, O., Veenland, J. U., & De Boer, T. J. (1965). Spectroscopic investigations of thiobenzophenones: I. Electronic spectra. Recueil des Travaux Chimiques des Pays-Bas, 84, 289–303. https://doi.org/10.1002/recl.19650840304

    Article  CAS  Google Scholar 

  10. Korver, O., Veenland, J. U., & De Boer, T. J. (1965). Spectroscopic investigations of thiobenzophenones: II. Electronic spectra. Correlation of substituent effects on the arylthiocarbonyl absorption maximum with substituent parameters. Recueil des Travaux Chimiques des Pays-Bas, 84, 304–309. https://doi.org/10.1002/recl.19650840305

    Article  CAS  Google Scholar 

  11. de Mayo, P. (1976). Thione photochemistry, and the chemistry of the S2 state. Accounts of Chemical Research, 9, 52–59. https://doi.org/10.1021/ar50098a002

    Article  Google Scholar 

  12. Hantzsch, A., & Bucerius, W. (1926). Über die Konstitution der Dithiocarbonsäuren und ihrer Salze. Beritche der deutschen chemischen Gesellschaft A/B, 59, 793–814. https://doi.org/10.1002/cber.19260590438

    Article  Google Scholar 

  13. Furlani, C., & Luciani, M. L. (1968). Complexes of dithiocarboxylic acids. Inorganic Chemistry, 7, 1586–1592. https://doi.org/10.1021/ic50066a021

    Article  CAS  Google Scholar 

  14. Bossa, M. (1969). MOLCAO calculations on some sulphur-containing π-electron systems. Journal of the Chemical Society B. https://doi.org/10.1039/J29690001182

    Article  Google Scholar 

  15. Grote, J., Friedrich, F., Berthold, K., Hericks, L., Neumann, B., Stammler, H. G., & Mitzel, N. W. (2018). Dithiocarboxylic acids: an old theme revisited and augmented by new preparative, spectroscopic and structural facts. Chemistry, 24, 2626–2633. https://doi.org/10.1002/chem.201704235

    Article  CAS  PubMed  Google Scholar 

  16. Deronzier, A. (1979). Les Proprietes Electrochemiques de Quelques Acides Dithiobenzoiques, de Leurs Sels de Sodium et des Disulfures Correspondants. Electrochimica Acta, 24, 1257–1266. https://doi.org/10.1016/0013-4686(79)87082-6

    Article  CAS  Google Scholar 

  17. Kato, S., Ito, I., Hattori, R., Mizuta, M., & Katada, T. (1978). Eine einfache Methode zur Darstellung von wasserfreien Natrium-dithiocarboxylaten. Zeitschrift für Naturforschung, 33b, 976–977. https://zfn.mpdl.mpg.de/data/Reihe_B/33/ZNB-1978-33b-0976.pdf

  18. Kato, S., Yamada, S., Goto, H., Terashima, K., Mizuta, M., & Katada, T. (1980). A convenient Preparation Method of Anhydrous Lithium, Potassium, Rubidium and Cesium Dithiocarboxylates. Zeitschrift für Naturforschung, 35b, 458–462. https://zfn.mpdl.mpg.de/data/Reihe_B/35/ZNB-1980-35b-0458.pdf

  19. Kato, S., Kitaoka, N., Niyomura, O., Kitoh, Y., Kanda, T., & Ebihara, M. (1999). Heavy alkali metal arenedithiocarboxylates: a facile synthesis, dimeric structure, and nonbonding interaction between the metals and aromatic ring carbons. Inorganic Chemistry, 38, 496–506. https://doi.org/10.1021/ic9808089

    Article  CAS  PubMed  Google Scholar 

  20. Bonnans-Plaisance, C., Gressier, J.-C., Levesque, G., & Mahjoub, A. (1985). Synthesis of dithiocarboxylates by reaction of dithiocarboxylic acids and their salts (magneisum halides or quarternary ammonium-salts) on halogen compounds, aldehydes and epoxides. Bulletin de la Societé Chimique de France, 5, 891–899.

    Google Scholar 

  21. Furlani, C., Flamini, A., Sgamellotti, A., Bellitto, C., & Piovesana, O. (1973). Electronic spectral studies of dithio- and perthio-carboxylato-nickel(II) complexes. Journal of the Chemical Society, Dalton Transactions. https://doi.org/10.1039/DT9730002404

    Article  Google Scholar 

  22. Kitchin, A. D., Velate, S., Chen, M., Ghiggino, K. P., Smith, T. A., & Steer, R. P. (2007). Photophysics of a dithioester RAFT polymerization agent and the acenaphthenyl model light-harvesting chromophore. Photochemical & Photobiological Sciences, 6, 853–856. https://doi.org/10.1039/b702811c

    Article  CAS  Google Scholar 

  23. Cauquis, G., & Deronzier, A. (1980). Electrochemical behaviour of Fe(III), Cr(III) and Co(III) dithiobenzoate complexes. Journal of Inorganic and Nuclear Chemistry, 42, 1447–1452. https://doi.org/10.1016/0022-1902(80)80111-4

    Article  CAS  Google Scholar 

  24. Kano, N., & Kawashima, T. (2005). Dithiocarboxylic Acid Salts of Group 1–17 Elements (Except for Carbon). Topics of Current Chemistry, 251, 141–180. https://doi.org/10.1007/b101008

    Article  CAS  Google Scholar 

  25. Borer, L. L., & Kong, J. V. (1989). Structure of 1,3-dimethylimidazolium-2-dithiocarboxylate. Acta Crystallographica, C45, 1169–1170. https://doi.org/10.1107/S0108270189000739

    Article  CAS  Google Scholar 

  26. Delaude, L., Demonceau, A., & Wouters, J. (2009). Assessing the potential of Zwitterionic NHC⋅CS2 adducts for probing the stereoelectronic parameters of N-heterocyclic carbenes. European Journal of Inorganic Chemistry. https://doi.org/10.1002/ejic.200801110

    Article  Google Scholar 

  27. Petz, W. (2015). Addition compounds between carbones, CL2, and main group Lewis acids: a new glance at old and new compounds. Coordination Chemistry Reviews, 291, 1–27. https://doi.org/10.1016/j.ccr.2015.01.007

    Article  CAS  Google Scholar 

  28. Jacquemin, D., Perpète, E. A., Vydrov, O. A., Scuseria, G. E., & Adamo, C. (2007). Assessment of long-range corrected functional performance for n→π* transitions in organic dyes. Journal of Chemical Physics, 127, 094102. https://doi.org/10.1063/1.2770700

    Article  CAS  Google Scholar 

  29. Jacquemin, D., Perpète, E. A., Scuseria, G. E., Cofini, I., & Adamo, C. (2008). TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. Journal of Chemical Theory and Computation, 4, 123–135. https://doi.org/10.1021/ct700187z

    Article  CAS  PubMed  Google Scholar 

  30. Jacquemin, D., Wathelet, V., Perpete, E. A., & Adamo, C. (2009). Extensive TD-DFT benchmark: singlet-excited states of organic molecules. Journal of Chemical Theory and Computation, 5, 2420–2435. https://doi.org/10.1063/1.2770700

    Article  CAS  PubMed  Google Scholar 

  31. Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393, 51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  32. Strauch, P., Dempe, B., Kempe, R., Dietzsch, W., Sieler, J., & Hoyer, E. (1994). 1,1-Dithiooxalsäurederivate als Liganden in Übergangmetallkomplexen: Struktur von O-Methyl-1,1-dithiooxalato-bis(triphenylphosphin)kupfer(I) und –silber(I) Zeitschrift für anorganische und allgemeine Chemie, 620, 498–504. https://doi.org/10.1002/zaac.19946200317

  33. Zigler, D. F., Tordin, E., Wu, G., Iretskii, A., Cariati, E., & Ford, P. C. (2011). Mononuclear copper(I) complexes of O-t-butyl-1,1-dithiooxalate and of O-t-butyl-1-perthio-1-thiooxalate. Inorganica Chimica Acta, 374, 261–268. https://doi.org/10.1016/j.ica.2011.02.037

    Article  CAS  Google Scholar 

  34. Houben, J. (1906). Ueber Carbithiosäuren. I. Arylcarbithiosäuren. Beritche der deutschen chemischen Gesellschaft, 39, 3219–3233. https://doi.org/10.1002/cber.190603903140

    Article  CAS  Google Scholar 

  35. Houben, J., & Pohl, H. (1907). Über Carbithiosäuren. II. Die geschwefelte Essigsäure, CH3OS.SH. Beritche der deutschen chemischen Gesellschaft, 40, 1303–1307. https://doi.org/10.1002/cber.19070400212

    Article  CAS  Google Scholar 

  36. Houben, J., & Pohl, H. (1907). Über Carbithiosäuren. III. Die geschwefelte Propion-, Butter-, Isobaldrian- und Isocapronsäure. Beritche der deutschen chemischen Gesellschaft, 40, 1725–1730.

    Article  CAS  Google Scholar 

  37. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., & Montgomery, J. A., Jr. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363. https://doi.org/10.1002/cber.19070400269

    Article  CAS  Google Scholar 

  38. Gordon, M. S., & Schmidt, M.W. (2005). Advances in Electronic Structure Theory: GAMESS a Decade Later. In C.E. Dykstra, G. Frenking, K.S. Kim, & G.E. Scuseria (Eds.), Theory and Applications of Computational Chemistry, the first forty years. (Elsevier, Amsterdam, pp 1167–1189). https://doi.org/10.1016/B978-044451719-7/50084-6

  39. Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D., & Windus, T. L. (2019). A new basis set exchange: an open, up-to-date resource for the molecular sciences community. Journal of Chemical Information Modeling, 59, 4814–4820. https://doi.org/10.1021/acs.jcim.9b00725

    Article  CAS  PubMed  Google Scholar 

  40. Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: the PBE0 model. Journal of Chemical Physics, 110, 6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  41. Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. A. (2010). Consistent and accurate Ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132, 154104. https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  42. Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Physical Chemistry Chemical Physics, 7, 3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  43. Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solution model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B, 113, 6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  Google Scholar 

  44. Wang, Y., & Li, H. (2009). Smooth potential energy surface for cavitation, dispersion, and repulsion free energies in polarizable continuum model. Journal of Chemical Physics. https://doi.org/10.1063/1.3268921

    Article  Google Scholar 

  45. Plasser, F., & Lischka, H. (2012). Analysis of excitonic and charge transfer interactions from quantum chemical calculations. Journal of Chemical Theory and Computation, 8, 2777–2789. https://doi.org/10.1021/ct300307c

    Article  CAS  PubMed  Google Scholar 

  46. Plasser, F. (2016). Entanglement entropy of electronic excitations. Journal of Chemical Physics, 144, 194107. https://doi.org/10.1063/1.4949535

    Article  CAS  Google Scholar 

  47. Mai, S., Plasser, F., Dorn, J., Fumanal, M., Daniel, C., & González, L. (2018). Quantitative wave function analysis for excited states of transition metal complexes. Coordination Chemistry Reviews, 361, 74–97. https://doi.org/10.1016/j.ccr.2018.01.019

    Article  CAS  Google Scholar 

  48. Bode, B. M., & Gordon, M. S. (1998). Macmolplt: a graphical user interface for GAMESS. Journal of Molecular Graphics and Modelling, 16, 133–138. https://doi.org/10.1016/S1093-3263(99)00002-9

    Article  CAS  PubMed  Google Scholar 

  49. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org

  50. O’Boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29, 839–845. https://doi.org/10.1002/jcc.20823

    Article  CAS  PubMed  Google Scholar 

  51. Lewis, G. N., & Calvin, M. (1939). The color of organic substances. Chemical Reviews, 25, 273–328. https://doi.org/10.1021/cr60081a004

    Article  CAS  Google Scholar 

  52. Bonnans-Plaisance, C., & Gressier, J.-C. (1988). Nucleophilic substitution by benzodithioate anions. Journal of Chemical Education, 65, 93–94. https://doi.org/10.1021/ed065p93

    Article  CAS  Google Scholar 

  53. Borel, M. M., & Ledesert, M. (1975). The crystal structure of potassium dithioacetate. Zeitschrift für anorganische und allgemeine Chemie., 415, 285–288. https://doi.org/10.1002/zaac.19754150313

    Article  CAS  Google Scholar 

  54. Engler, V. R., Dräger, M., & Gattow, G. (1974). Über Chalkogenolate. LXIV Untersuchungen über Thioameisensäuren 7. Kristallstruktur von Tetraäthylammoniumcyanodithioformiat. Zeitschrift für anorganische und allgemeine Chemie, 403, 81–86. https://doi.org/10.1002/zaac.19744030110

    Article  Google Scholar 

  55. Mahjoub, A. (2005). Crystal structure of benzyltrimethylammonium dithiobenzoate, [C6H5CH2N(CH3)3][C6H5CS2]. Zeitschrift für Kristallographie, 220, 473–474. https://doi.org/10.1524/ncrs.2005.220.3.473

    Article  CAS  Google Scholar 

  56. Sartor, S. M., Lattke, Y. M., McCarthy, B. G., Miyake, G. M., & Damrauer, N. H. (2019). Effects of naphthyl connectivity on the photophysics of compact organic charge-transfer photoredox catalysts. Journal of Physical Chemistry A, 123, 4727–4736. https://doi.org/10.1021/acs.jpca.9b03286

    Article  CAS  Google Scholar 

  57. Fabian, J., & Mehlhorn, A. (1967). Beschreibung der Thiocarbonylvorbande mit Hilfe der einfachen HMO-Methode. Zeitschrift für Chemie, 5, 192–194. https://doi.org/10.1002/zfch.19670070517

    Article  Google Scholar 

  58. Paone, S., Moule, D. C., Bruno, A. E., & Steer, R. P. (1984). Vibronic Analyses of the Rydberg and lower intervalence electronic transitions in thioacetone. Journal of Molecular Spectroscopy, 107, 1–11. https://doi.org/10.1016/0022-2852(84)90260-1

    Article  CAS  Google Scholar 

  59. Zuehlsdorff, T. J., & Isborn, C. M. (2018). Combining the ensemble and Franck-Condon approaches for calculating spectral shapes of molecules in solution. Journal of Chemical Physics, 148, 024110. https://doi.org/10.1063/1.5006043

    Article  CAS  Google Scholar 

  60. Hansch, C., Leo, A., & Taft, R. W. (1991). A survey of Hammett substituent constants and resonance and field parameters. Chemical Reviews, 91, 165–195. https://doi.org/10.1021/cr00002a004

    Article  CAS  Google Scholar 

  61. Adams, N. G., & Richardson, D. M. (1951). Aromatic hydrocarbons in some diesel fuel fractions. Analytical Chemistry, 23, 129–133. https://doi.org/10.1021/ac60049a026

    Article  CAS  Google Scholar 

  62. Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2015). Electronic absorption spectra and solvatochromic shifts by the vertical excitation model: Solvated clusters and molecular dynamics sampling. Journal of Physical Chemistry B, 119, 958–967. https://doi.org/10.1021/jp506293w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank The Frost Fund (https://cosam.calpoly.edu/frost-fund) for supporting this research with the purchase of a UV–visible Spectrophotometer, and for funding summer research supplies and stipends. Start-up funds from the Cal Poly College of Science and Mathematics were also used to support this research. We also thank undergraduate students whose contributions to other projects supported the group success: Mark Mattison (B.S. 2018), Terrace Wong (B.S. 2019), Jonathan Richarte, Micah McClure (B.S. 2021), Kiely Payne (Templeton H.S. 2019), Henry Mull (B.S. 2019), Nicholas Baird, Erik McCutchen, An Pham, and Monica Aichouri. DFZ thanks Dr. Megan Grabenauer of RTI, International for editorial discussions during preparation of the manuscript.

Funding

The work herein was financially supported by The Frost Fund (https://cosam.calpoly.edu/frost-fund) and with start-up funds from the Cal Poly College of Science and Mathematics

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the manuscript.

Corresponding authors

Correspondence to M. Taylor Haynes or David F. Zigler.

Ethics declarations

Conflict of interest

The authors have no conflicts or competing interests to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2021_144_MOESM1_ESM.docx

Supplementary file1 The Supporting Information document contains additional experimental details and results organized into sections as follows: all experimental procedures (Section S1), comparative experimental and theoretical absorbance spectra for each compound (Section S2), natural transition orbitals (Section S3.1), theoretical electronic state transition assignments (Section S3.2), characterization data (Appendix A1-A3), and coordinates of optimized structures (Appendix A4) (DOCX 9139 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, A.K., Henry, A.M., Madriaga, J.P. et al. Substituent effects on the UV–visible spectrum and excited electronic states of dithiocarboxylates. Photochem Photobiol Sci 21, 303–318 (2022). https://doi.org/10.1007/s43630-021-00144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00144-5

Keywords

Navigation