Log in

Is Flexion Gap Rectangular in Native Indian Knees? Results of an MRI Study

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

The purpose of this study was to evaluate the flexion-gap of the native knees in the normal population and to assess any gender-specific variations in the flexion gap of the knees.

Methods

A total of 50 normal asymptomatic volunteers with normal knee radiographs were selected for MRI of the knee. The left knee was scanned in an open MRI using a T1-weighted sequence. Imaging was performed in neutral, passive varus and valgus stress at 90° of knee flexion by placing custom-made blocks on a special board consecutively below the distal part of the leg.

Results

The study population consisted of 26 males and 24 females with a mean age of 25.77 years. Under varus stress, the mean lateral flexion gap increased to 9.28 ± 1.53 mm and under valgus stress, the mean medial flexion gap increased to 2.75 ± 1.22 mm from neutral. The increase in the flexion gap on the lateral side was 5.28 ± 1.79 mm, which was significantly higher compared to that on the medial side. In gender-specific analysis, the mean lateral flexion gap was 10.21 mm in females and 8.46 mm in males under varus stress.

Conclusion

The findings of the study indicate that the lateral soft tissues are more lax compared to the medial soft tissue structures and this laxity is higher in females as compared to males. The study provides evidence of the existing physiological variations of these soft tissue structures resulting in a trapezoidal flexion gap in the native knees rather than the recommended rectangular gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The manuscript data can be made available on request.

References

  1. Willcox, N. M. J., Clarke, J. V., Smith, B. R. K., Deakin, A. H., & Deep, K. (2012). A comparison of radiological and computer navigation measurements of lower limb coronal alignment before and after total knee replacement. The Journal of Bone and Joint Surgery Series B, 94, 1234–1240. https://doi.org/10.1302/0301-620X.94B9.28250

    Article  CAS  Google Scholar 

  2. Scott, W. N. (2017). Insall & Scott surgery of the knee. (6th ed.). Churchill Livingstone/Elsevier.

    Google Scholar 

  3. Scuderi, G., & Insall, J. (1989). The posterior stabilized knee prosthesis. Orthopedic Clinics of North America, 20, 71–78

    CAS  Google Scholar 

  4. Beverland D. E. (2009). Soft-tissue balance in total knee arthroplasty. In European instructional lectures. Springer Berlin Heidelberg. pp. 213–8.

  5. Tokuhara, Y., Kadoya, Y., Kanekasu, K., Kondo, M., Kobayashi, A., & Takaoka, K. (2006). Evaluation of the flexion gap by axial radiography of the distal femur. The Journal of Bone and Joint Surgery Series B, 88, 1327–1330. https://doi.org/10.1302/0301-620X.88B1017793

    Article  CAS  Google Scholar 

  6. Tokuhara, Y., Kadoya, Y., Nakagawa, S., Kobayashi, A., Takaoka, K., & Surgeon, O. (2004). The flexion gap in normal knees AN MRI STUDY. The Journal of Bone and Joint Surgery [British Volume], 86, 1133–1139. https://doi.org/10.1302/0301-620X.86B8

    Article  CAS  Google Scholar 

  7. Matsuda, S., & Ito, H. (2015). Ligament balancing in total knee arthroplasty—Medial stabilizing technique. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 2, 108–113. https://doi.org/10.1016/j.asmart.2015.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Deep, K. (2014). Collateral ligament laxity in knees: what is normal? Clinical Orthopaedics and Related Research, 472, 3426–3431. https://doi.org/10.1007/s11999-014-3865-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Okazaki, K., Miura, H., Matsuda, S., Takeuchi, N., Mawatari, T., Hashizume, M., et al. (2006). Asymmetry of mediolateral laxity of the normal knee. Journal of Orthopaedic Science, 11, 264–266. https://doi.org/10.1007/s00776-006-1009-x

    Article  PubMed  Google Scholar 

  10. Rajendran, K. (1985). Mechanism of locking at the knee joint. Journal of Anatomy, 143, 189–194

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomine, J. M., Boudjemaa, A., Gibon, Y., & Biga, N. (1981). Varizing axial distances in osteoarthrosis of the knee (author’s transl). Revue de Chirurgie Orthopedique et Reparatrice de l’Appareil Moteur, 67, 319–327

    CAS  PubMed  Google Scholar 

  12. Yoo, J. C., Ahn, J. H., Sung, K. S., Wang, J. H., Lee, S. H., Bae, S. W., et al. (2006). Measurement and comparison of the difference in normal medial and lateral knee joint opening. Knee Surgery, Sport Traumatology, Arthroscopy, 14, 1238–1244. https://doi.org/10.1007/s00167-006-0095-9

    Article  Google Scholar 

  13. Ahlberg, A., Moussa, M., & Al-Nahdi, M. (1988). On geographical variations in the normal range of joint motion. Clinical Orthopaedics and Related Research. https://doi.org/10.1097/00003086-198809000-00040

    Article  PubMed  Google Scholar 

  14. Mulholland, S. J., & Wyss, U. P. (2001). Activities of daily living in non-Western cultures: Range of motion requirements for hip and knee joint implants. International Journal of Rehabilitation Research, 24, 191–198. https://doi.org/10.1097/00004356-200109000-00004

    Article  CAS  PubMed  Google Scholar 

  15. Dennis, D. A., Komistek, R. D., Walker, S. A., Cheal, E. J., & Stiehl, J. B. (2001). Femoral condylar lift-off in vivo in total knee arthroplasty. The Journal of Bone and Joint Surgery. British Volume, 83, 33

    Article  CAS  Google Scholar 

  16. Dennis, D. A., Komistek, R. D., Mahfouz, M. R., Haas, B. D., & Stiehl, J. B. (2003). Multicenter determination of in vivo kinematics after total knee arthroplasty. Clinical Orthopaedics & Related Research, 416, 37–57. https://doi.org/10.1097/01.blo.0000092986.12414.b5

    Article  Google Scholar 

  17. Dennis, D. A., Komistek, R. D., Stiehl, J. B., Walker, S. A., & Dennis, K. N. (1998). Range of motion after total knee arthroplasty: The effect of implant design and weight-bearing conditions. Journal of Arthroplasty, 13, 748–752. https://doi.org/10.1016/S0883-5403(98)90025-0

    Article  CAS  Google Scholar 

  18. McEwen, P., Balendra, G., & Doma, K. (2019). Medial and lateral gap laxity differential in computer-assisted kinematic total knee arthroplasty. The Bone & Joint Journal, 101, 331–339. https://doi.org/10.1302/0301-620X.101B3.BJJ-2018-0544.R1

    Article  Google Scholar 

  19. Azukizawa, M., Kuriyama, S., Nakamura, S., Nishitani, K., Lyman, S., Morita, Y., et al. (2018). Intraoperative medial joint laxity in flexion decreases patient satisfaction after total knee arthroplasty. Archives of Orthopaedic and Trauma Surgery, 138, 1143–1150. https://doi.org/10.1007/s00402-018-2965-2

    Article  PubMed  Google Scholar 

  20. Hungerford, D. S., & Krackow, K. A. (1985). Total joint arthroplasty of the knee. Clinical Orthopaedics and Related Research. https://doi.org/10.1097/00003086-198501000-00004

    Article  PubMed  Google Scholar 

  21. Massin, P. (2017). How does total knee replacement technique influence polyethylene wear? Orthopaedics & Traumatology, Surgery & Research, 103, S21–S27. https://doi.org/10.1016/j.otsr.2016.06.024

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SKP: manuscript preparation, manuscript editing; MS: data collection, subject allocation, manuscript preparation; AAS: supervision, manuscript editing, statistical analysis; PT: manuscript editing, statistical analysis, data collection; RKG: manuscript editing, data collection; RA: data collection and analysis. JC: manuscript editing, statistical analysis. AS: data collection, manuscript editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Subodh Kumar Pathak.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, S.K., Sethi, M., Salunke, A.A. et al. Is Flexion Gap Rectangular in Native Indian Knees? Results of an MRI Study. JOIO 55, 1127–1134 (2021). https://doi.org/10.1007/s43465-021-00418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-021-00418-1

Keywords

Navigation