Log in

Tailoring the microstructure and mechanical properties of superaustenitic stainless steel by cold rolling and recrystallization annealing

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The effects of cold rolling, subsequent continuous heating, and aging on the microstructure and tensile properties of AISI 904L superaustenitic stainless steel were investigated. During cold rolling, the austenite phase showed high mechanical stability against the deformation-induced martensitic transformation. However, work-hardening during cold deformation manifested itself into high strength and reduced ductility for the material during subsequent tensile testing. Upon continuous heating to hot temperatures, the cold worked sample started to recrystallize, and as a result, a fine recrystallized microstructure with an average grain size of 3.5 μm and fine Cr–Mo-rich σ-phase precipitates were obtained for the sample heated up to 925 °C. Heating up to higher temperatures led to the coarsening of austenite grains and the dissolution of the σ-phase. Grain refinement during thermomechanical processing significantly improved the yield stress, as expressed by the Hall–Petch (HP) relation. However, precipitation of the intragranular σ-phase led to deviations from the HP-relation, reflected in enhanced yield stresses or different slopes. Moreover, the formation of the σ-phase during aging adversely affected the elongation to failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors stated that the processed data required to reproduce these findings were available in this manuscript.

References

  1. Sohrabi MJ, Mirzadeh H, Sadeghpour S, Geranmayeh AR, Mahmudi R. Tailoring the strength-ductility balance of a commercial austenitic stainless steel with combined TWIP and TRIP effects. Arch Civil Mech Eng. 2023;23(3):170.

    Article  Google Scholar 

  2. Sohrabi MJ, Mirzadeh H, Dehghanian C. Unraveling the effects of surface preparation on the pitting corrosion resistance of austenitic stainless steel. Arch Civil Mech Eng. 2020;20:8.

    Article  Google Scholar 

  3. Huang M, Wang L, Wang C, Mogucheva A, Xu W. Characterization of deformation-induced martensite with various AGSs upon Charpy impact loading and correlation with transformation mechanisms. Mater Charact. 2022;184: 111704.

    Article  CAS  Google Scholar 

  4. Li J, Qin W, Peng P, Chen M, Mao Q, Yue W, Kang J, Meng D, She D, Zhu X, Li Y. Effects of geometric dimension and grain size on impact properties of 316L stainless steel. Mater Lett. 2021;284: 128908.

    Article  CAS  Google Scholar 

  5. Sohrabi MJ, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: a review. Arch Civil Mech Eng. 2020;20:1–24.

    Article  Google Scholar 

  6. Li J, Gao B, Huang Z, Zhou H, Mao Q, Li Y. Design for strength-ductility synergy of 316L stainless steel with heterogeneous lamella structure through medium cold rolling and annealing. Vacuum. 2018;157:128–35.

    Article  ADS  CAS  Google Scholar 

  7. Qin W, Li J, Liu Y, Kang J, Zhu L, Shu D, Peng P, She D, Meng D, Li Y. Effects of grain size on tensile property and fracture morphology of 316L stainless steel. Mater Lett. 2019;254:116–9.

    Article  CAS  Google Scholar 

  8. Babu KA, Prithiv TS, Gupta A, Mandal S. Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method. Comput Mater Sci. 2021;195: 110482.

    Article  Google Scholar 

  9. Momeni A, Dehghani K, Keshmiri H, Ebrahimi GR. Hot deformation behavior and microstructural evolution of a superaustenitic stainless steel. Mater Sci Eng A. 2010;527(6):1605–11.

    Article  Google Scholar 

  10. Plaut RL, Herrera C, Escriba DM, Rios PR, Padilha AF. A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance. Mater Res. 2007;10:453–60.

    Article  CAS  Google Scholar 

  11. Dagur AH, Kartha AA, Subodh MA, Vishnu C, Arun D, Kumar MGV, Abraham WS, Chatterjee A, Abraham J, Abraham J. Microstructure, mechanical properties and biocorrosion behavior of dissimilar welds of AISI 904L and UNS S32750. J Manuf Process. 2017;30:27–40.

    Article  Google Scholar 

  12. Koppula S, Jagarlamudi VG, Prudhvi RS, Rajkumar A, Prashanth S, Saranya J, Sateesh N, Subbiah R. Investigation of AISI 904L austenitic stainless steel by carbonitriding process under dry sliding conditions. Mater Today. 2021;44:1418–22.

    CAS  Google Scholar 

  13. Kangas P, Chai GC. Use of advanced austenitic and duplex stainless steels for applications in oil & gas and process industry. Adv Mater Res. 2013;794:645–69.

    Article  Google Scholar 

  14. Tehovnik F, Žužek B, Arh B, Burja J, Podgornik B. Hot rolling of the superaustenitic stainless steel AISI 904L. Mater Tehnol. 2014;48(1):137–40.

    CAS  Google Scholar 

  15. Bogdanowicz Z, Jóźwik P, Nasiłowska B. Microstructure and mechanical behavior of a CO2 laser and TIG welded 904L steel. Metall Foundry Eng. 2014;40(2):69–81.

    Article  Google Scholar 

  16. Tehovnik F, Burja J, Arh B, Vode F. Precipitation of σ phase in superaustenitic stainless steel UHB 904L. Metalurgija. 2017;56(1–2):63–6.

    CAS  Google Scholar 

  17. Ramkumar KD, Choudhary A, Aggarwal S, Srivastava A, Mohan TH, Arivazhagan N. Characterization of microstructure and mechanical properties of continuous and pulsed current gas tungsten arc welded superaustenitic stainless steel. J Mater Res. 2015;30(10):1727–46.

    Article  ADS  Google Scholar 

  18. Han Y, Liu G, Zou D, Liu R, Qiao G. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression. Mater Sci Eng, A. 2013;565:342–50.

    Article  CAS  Google Scholar 

  19. Stornelli G, Gaggiotti M, Mancini S, Napoli G, Rocchi C, Tirasso C, Di Schino A. Recrystallization and grain growth of AISI 904L super-austenitic stainless steel: a multivariate regression approach. Metals. 2022;12(2):200.

    Article  CAS  Google Scholar 

  20. Zhang W, Zhang J, Han Y, Liu R, Zou DN, Qiao GJ. Metadynamic recrystallization behavior of As-cast 904L superaustenitic stainless steel. J Iron Steel Res Int. 2016;23(2):151–9.

    Article  Google Scholar 

  21. Sohrabi MJ, Mirzadeh H, Sadeghpour S, Mahmudi R. Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel. Int J Plast. 2023;160: 103502.

    Article  CAS  Google Scholar 

  22. Naghizadeh M, Mirzadeh H. Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metall Mater Trans A. 2018;49:2248–56.

    Article  CAS  Google Scholar 

  23. Järvenpää A, Jaskari M, Kisko A, Karjalainen P. Processing and properties of reversion-treated austenitic stainless steels. Metals. 2020;10(2):281.

    Article  Google Scholar 

  24. Lee CY, Yoo CS, Kermanpur A, Lee YK. The effects of multi-cyclic thermo-mechanical treatment on the grain refinement and tensile properties of a metastable austenitic steel. J Alloy Compd. 2014;583:357–60.

    Article  CAS  Google Scholar 

  25. Anburaj J, Nazirudeen SM, Narayanan R, Anandavel B, Chandrasekar A. Ageing of forged superaustenitic stainless steel: Precipitate phases and mechanical properties. Mater Sci Eng A. 2012;535:99–107.

    Article  CAS  Google Scholar 

  26. Lee TH, Kim SJ, Jung YC. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 C. Metall Mater Trans A. 2000;31(7):1713–23.

    Article  Google Scholar 

  27. Villanueva DE, Junior FCP, Plaut RL, Padilha AF. Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, superferritic and duplex. Mater Sci Technol. 2006;22(9):1098–104.

    Article  ADS  CAS  Google Scholar 

  28. Heino S, Knutson-Wedel EM, Karlsson B. Precipitation behaviour in heat affected zone of welded superaustenitic stainless steel. Mater Sci Technol. 1999;15(1):101–8.

    Article  ADS  CAS  Google Scholar 

  29. Mirzadeh H. Grain refinement of magnesium alloys by dynamic recrystallization (DRX): A review. J Mark Res. 2023;25:7050–77.

    CAS  Google Scholar 

  30. Sohrabi MJ, Mirzadeh H, Sadeghpour S, Mahmudi R. Explaining the drop of work-hardening rate and limitation of transformation-induced plasticity effect in metastable stainless steels during tensile deformation. Scr Mater. 2023;231: 115465.

    Article  CAS  Google Scholar 

  31. Nohara K, Ono Y, Ohashi N. Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. Tetsu-to-Hagané. 1977;63(5):772–82.

    Article  CAS  Google Scholar 

  32. Sohrabi MJ, Mirzadeh H, Dehghanian C. Significance of martensite reversion and austenite stability to the mechanical properties and transformation-induced plasticity effect of austenitic stainless steels. J Mater Eng Perform. 2020;29:3233–42.

    Article  CAS  Google Scholar 

  33. Jabłońska MB, Kowalczyk K, Tkocz M, Chulist R, Rodak K, Bednarczyk I, Cichański A. The effect of severe plastic deformation on the IF steel properties, evolution of structure and crystallographic texture after dual rolls equal channel extrusion deformation. Arch Civil Mech Eng. 2021;21:1–10.

    Article  Google Scholar 

  34. Kowalczyk K, Jabłońska M, Rusz S, Junak G. Influence of recrystallization annealing on the properties and structure of low-carbon ferritic steel IF. Arch Metall Mater. 2018;63(4):1957–61.

    Article  CAS  Google Scholar 

  35. Aashranth B, Davinci MA, Samantaray D, Borah U, Albert SK. A new critical point on the stress-strain curve: delineation of dynamic recrystallization from grain growth. Mater Des. 2017;116:495–503.

    Article  CAS  Google Scholar 

  36. Malta PO, Alves DS, Ferreira AOV, Moutinho ID, Dias CAP, Santos DB. Static recrystallization kinetics and crystallographic texture of Nb-stabilized ferritic stainless steel based on orientation imaging microscopy. Metall Mater Trans A. 2017;48:1288–309.

    Article  CAS  Google Scholar 

  37. Naghizadeh M, Mirzadeh H. Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metall Mater Trans A. 2016;47:5698–703.

    Article  CAS  Google Scholar 

  38. VishnuKumar M, Muthupandi V, Jerome S. Microstructural characteristics, mechanical properties and corrosion performance of super austenitic stainless steel 904L produced by wire arc additive manufacturing. Mater Today Commun. 2023;35: 105801.

    Article  CAS  Google Scholar 

  39. Mirzadeh H. Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review. Int J Miner Metall Mater. 2023;30(7):1278–96.

    Article  CAS  Google Scholar 

  40. Di Schino A, Salvatori I, Kenny JM. Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. J Mater Sci. 2002;37:4561–5.

    Article  ADS  Google Scholar 

  41. Zeng L, Song X, Chen N, Rong Y, Zuo X, Min N. A new understanding of transformation induced plasticity (TRIP) effect in austenitic steels. Mater Sci Eng A. 2022;857: 143742.

    Article  CAS  Google Scholar 

  42. Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr Opin Solid State Mater Sci. 2011;15(4):141–68.

    Article  ADS  CAS  Google Scholar 

  43. Li J, Fang C, Liu Y, Huang Z, Wang S, Mao Q, Li Y. Deformation mechanisms of 304L stainless steel with heterogeneous lamella structure. Mater Sci Eng, A. 2019;742:409–13.

    Article  CAS  Google Scholar 

  44. Molnár D, Engberg G, Li W, Vitos L. Deformation properties of austenitic stainless steels with different stacking fault energies. Mater Sci Forum. 2019;941:190–7.

    Article  Google Scholar 

  45. del Abra-Arzola JL, García-Rentería MA, Cruz-Hernández VL, García-Guerra J, Martínez-Landeros VH, Falcón-Franco LA, Curiel-López FF. Study of the effect of sigma phase precipitation on the sliding wear and corrosion behaviour of duplex stainless steel AISI 2205. Wear. 2018;400:43–51.

    Article  Google Scholar 

Download references

Funding

This work received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

The manuscript has been prepared by the contribution of all authors, it is the original authors work, it has not been published before, it has been solely submitted to this journal, and if accepted, it will not be submitted to any other journal in any language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, M.J., Mirzadeh, H., Roostaei, M. et al. Tailoring the microstructure and mechanical properties of superaustenitic stainless steel by cold rolling and recrystallization annealing. Archiv.Civ.Mech.Eng 23, 247 (2023). https://doi.org/10.1007/s43452-023-00796-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00796-3

Keywords

Navigation