Log in

Effects of N-acetylcysteine and acetyl-l-carnitine on acute PTZ-induced seizures in larval and adult zebrafish

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Epilepsy is a prevalent neurological disease, affecting approximately 1–2% of the global population. The hallmark of epilepsy is the occurrence of epileptic seizures, which are characterized by predictable behavioral changes reflecting the underlying neural mechanisms of the disease. Unfortunately, around 30% of patients do not respond to current pharmacological treatments. Consequently, exploring alternative therapeutic options for managing this condition is crucial. Two potential candidates for attenuating seizures are N-acetylcysteine (NAC) and Acetyl-l-carnitine (ALC), as they have shown promising neuroprotective effects through the modulation of glutamatergic neurotransmission.

Methods

This study aimed to assess the effects of varying concentrations (0.1, 1.0, and 10 mg/L) of NAC and ALC on acute PTZ-induced seizures in zebrafish in both adult and larval stages. The evaluation of behavioral parameters such as seizure intensity and latency to the crisis can provide insights into the efficacy of these substances.

Results

Our results indicate that both drugs at any of the tested concentrations were not able to reduce PTZ-induced epileptic seizures. On the other hand, the administration of diazepam demonstrated a notable reduction in seizure intensity and increased latencies to higher scores of epileptic seizures.

Conclusion

Consequently, we conclude that, under the conditions employed in this study, NAC and ALC do not exhibit any significant effects on acute seizures in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting this study's findings are available in the Open Science Framework at https://osf.io/uezfm/.

Abbreviations

ASD:

Antiseizure drugs

AUC:

Area under the curve

BOD:

Biochemical oxygen demand incubator

CEUA:

Ethics Committee for animal use

CONCEA:

Conselho Nacional de Controle de Experimentação Animal

dpf:

Days post-fertilization

DZP:

Diazepam

GABA:

Gamma-aminobutyric acid

GABAA :

Gamma-aminobutyric acid type A receptor

Grm2 :

Glutamate metabotropic receptor 2 gene

GSH:

Glutathione

ALC:

Acetyl-l-carnitine

MDA:

Malondialdehyde

mGlu2:

Metabotropic glutamate type 2 receptors

mGluRs:

Extra-synaptic metabotropic receptors

NAC:

N-Acetylcysteine

PTZ:

Pentylenetetrazole

UFRGS:

Universidade Federal do Rio Grande do Sul

References

  1. Falco-Walter J. Epilepsy-definition, classification, pathophysiology, and epidemiology. Semin Neurol. 2020;40:617–23. https://doi.org/10.1055/s-0040-1718719.

    Article  PubMed  Google Scholar 

  2. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–82. https://doi.org/10.1111/epi.12550.

    Article  PubMed  Google Scholar 

  3. Fisher RS, Boas WE, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46:470–2. https://doi.org/10.1111/j.0013-9580.2005.66104.x.

    Article  PubMed  Google Scholar 

  4. Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2019;54:185–91. https://doi.org/10.1159/000503831.

    Article  PubMed  Google Scholar 

  5. Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, et al. Epilepsy. Nat Rev Dis Primer. 2018;4:18024. https://doi.org/10.1038/nrdp.2018.24.

    Article  Google Scholar 

  6. Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015;5: a022426. https://doi.org/10.1101/cshperspect.a022426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sultana B, Panzini M-A, Veilleux Carpentier A, Comtois J, Rioux B, Gore G, et al. Incidence and prevalence of drug-resistant epilepsy: a systematic review and meta-analysis. Neurology. 2021;96:805–17. https://doi.org/10.1212/WNL.0000000000011839.

    Article  PubMed  Google Scholar 

  8. Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov. 2010;9:68–82. https://doi.org/10.1038/nrd2997.

    Article  CAS  PubMed  Google Scholar 

  9. Skvarc DR, Dean OM, Byrne LK, Gray L, Lane S, Lewis M, et al. The effect of N-acetylcysteine (NAC) on human cognition—a systematic review. Neurosci Biobehav Rev. 2017;78:44–56. https://doi.org/10.1016/j.neubiorev.2017.04.013.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng W, Zhang Q-E, Cai D-B, Yang X-H, Qiu Y, Ungvari GS, et al. N-Acetylcysteine for major mental disorders: a systematic review and meta-analysis of randomized controlled trials. Acta Psychiatr Scand. 2018;137:391–400. https://doi.org/10.1111/acps.12862.

    Article  CAS  PubMed  Google Scholar 

  11. Mocelin R, Herrmann AP, Marcon M, Rambo CL, Rohden A, Bevilaqua F, et al. N-Acetylcysteine prevents stress-induced anxiety behavior in zebrafish. Pharmacol Biochem Behav. 2015;139:121–6. https://doi.org/10.1016/j.pbb.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  12. Santos P, Herrmann AP, Benvenutti R, Noetzold G, Giongo F, Gama CS, et al. Anxiolytic properties of N-acetylcysteine in mice. Behav Brain Res. 2017;317:461–9. https://doi.org/10.1016/j.bbr.2016.10.010.

    Article  CAS  PubMed  Google Scholar 

  13. Mocelin R, Marcon M, D’ambros S, Herrmann AP, da Rosa Araujo AS, Piato A. Behavioral and biochemical effects of N-acetylcysteine in Zebrafish acutely exposed to ethanol. Neurochem Res. 2018;43:458–64. https://doi.org/10.1007/s11064-017-2442-2.

    Article  CAS  PubMed  Google Scholar 

  14. Bilister Egilmez C, Azak Pazarlar B, Erdogan MA, Erbas O. N-Acetyl cysteine: a new look at its effect on PTZ-induced convulsions. Epilepsy Res. 2023;193: 107144. https://doi.org/10.1016/j.eplepsyres.2023.107144.

    Article  CAS  PubMed  Google Scholar 

  15. Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F, et al. l-Acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci. 2013;110:4804–9. https://doi.org/10.1073/pnas.1216100110.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hussein AM, Adel M, El-Mesery M, Abbas KM, Ali AN, Abulseoud OA. l-Carnitine modulates epileptic seizures in pentylenetetrazole-kindled rats via suppression of apoptosis and autophagy and upregulation of Hsp70. Brain Sci. 2018;8:45. https://doi.org/10.3390/brainsci8030045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baker DA, ** Z-X, Shen H, Swanson CJ, Kalivas PW. The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci Off J Soc Neurosci. 2002;22:9134–41. https://doi.org/10.1523/JNEUROSCI.22-20-09134.2002.

    Article  CAS  Google Scholar 

  18. Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci. 2005;25:6389–93. https://doi.org/10.1523/JNEUROSCI.1007-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baraban SC, Taylor MR, Castro PA, Baier H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience. 2005;131:759–68. https://doi.org/10.1016/j.neuroscience.2004.11.031.

    Article  CAS  PubMed  Google Scholar 

  20. Siebel AM, Menezes FP, da Costa SI, Petersen BD, Bonan CD. Rapamycin suppresses PTZ-induced seizures at different developmental stages of zebrafish. Pharmacol Biochem Behav. 2015;139 Pt B:163–8. https://doi.org/10.1016/j.pbb.2015.05.022.

    Article  CAS  PubMed  Google Scholar 

  21. Bertoncello KT, Aguiar GPS, Oliveira JV, Siebel AM. Micronization potentiates curcumin’s antiseizure effect and brings an important advance in epilepsy treatment. Sci Rep. 2018;8:2645. https://doi.org/10.1038/s41598-018-20897-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mussulini BHM, Leite CE, Zenki KC, Moro L, Baggio S, Rico EP, et al. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PLoS One. 2013;8: e54515. https://doi.org/10.1371/journal.pone.0054515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berghmans S, Hunt J, Roach A, Goldsmith P. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res. 2007;75:18–28. https://doi.org/10.1016/j.eplepsyres.2007.03.015.

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence C, James A, Mobley S. Successful replacement of Artemia salina nauplii with Marine rotifers (Brachionus plicatilis) in the diet of preadult Zebrafish (Danio rerio). Zebrafish. 2015;12:366–71. https://doi.org/10.1089/zeb.2015.1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hernandez RE, Galitan L, Cameron J, Goodwin N, Ramakrishnan L. Delay of initial feeding of zebrafish larvae until 8 days postfertilization has no impact on survival or growth through the juvenile stage. Zebrafish. 2018;15:515–8. https://doi.org/10.1089/zeb.2018.1579.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leary S, Pharmaceuticals F, Underwood W, Anthony R, Cartner S, Johnson CL, et al. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition 2020.

  27. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Br J Pharmacol. 2020;177:3617–24. https://doi.org/10.1111/bph.15193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pancotto L, Mocelin R, Marcon M, Herrmann AP, Piato A. Anxiolytic and anti-stress effects of acute administration of acetyl-l-carnitine in zebrafish. PeerJ. 2018;6: e5309. https://doi.org/10.7717/peerj.5309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marcon M, Mocelin R, de Oliveira DL, da Rosa Araujo AS, Herrmann AP, Piato A. Acetyl-l-carnitine as a putative candidate for the treatment of stress-related psychiatric disorders: novel evidence from a zebrafish model. Neuropharmacology. 2019;150:145–52. https://doi.org/10.1016/j.neuropharm.2019.03.024.

    Article  CAS  PubMed  Google Scholar 

  30. Fontana BD, Ziani PR, Canzian J, Mezzomo NJ, Müller TE, Dos Santos MM, et al. Taurine protects from pentylenetetrazole-induced behavioral and neurochemical changes in zebrafish. Mol Neurobiol. 2019;56:583–94. https://doi.org/10.1007/s12035-018-1107-8.

    Article  CAS  PubMed  Google Scholar 

  31. Afrikanova T, Serruys A-SK, Buenafe OEM, Clinckers R, Smolders I, de Witte PAM, et al. Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PloS One. 2013;8:e54166. https://doi.org/10.1371/journal.pone.0054166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friard O, Gamba M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol. 2016;7:1325–30. https://doi.org/10.1111/2041-210X.12584.

    Article  Google Scholar 

  33. Canzian J, Müller TE, Franscescon F, Michelotti P, Fontana BD, Costa FV, et al. Modeling psychiatric comorbid symptoms of epileptic seizures in zebrafish. J Psychiatr Res. 2019;119:14–22. https://doi.org/10.1016/j.jpsychires.2019.09.007.

    Article  PubMed  Google Scholar 

  34. Kim Y, Lee Y, Lee H, Jung MW, Lee C. Impaired avoidance learning and increased hsp70 mRNA expression in pentylenetetrazol-treated zebrafish. Anim Cells Syst. 2009;13:275–81. https://doi.org/10.1080/19768354.2009.9647219.

    Article  CAS  Google Scholar 

  35. Kim Y-H, Lee Y, Lee K, Lee T, Kim Y-J, Lee C-J. Reduced neuronal proliferation by proconvulsant drugs in the develo** zebrafish brain. Neurotoxicol Teratol. 2010;32:551–7. https://doi.org/10.1016/j.ntt.2010.04.054.

    Article  CAS  PubMed  Google Scholar 

  36. Hong S, Lee P, Baraban SC, Lee LP. A novel long-term, multi-channel and non-invasive electrophysiology platform for zebrafish. Sci Rep. 2016;6:28248. https://doi.org/10.1038/srep28248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. 2020;168: 107966. https://doi.org/10.1016/j.neuropharm.2020.107966.

    Article  CAS  PubMed  Google Scholar 

  38. Pieróg M, Socała K, Doboszewska U, Wyska E, Guz L, Szopa A, et al. Effects of new antiseizure drugs on seizure activity and anxiety-like behavior in adult zebrafish. Toxicol Appl Pharmacol. 2021;427: 115655. https://doi.org/10.1016/j.taap.2021.115655.

    Article  CAS  PubMed  Google Scholar 

  39. Uma Devi P, Pillai KK, Vohora D. Modulation of pentylenetetrazole-induced seizures and oxidative stress parameters by sodium valproate in the absence and presence of N-acetylcysteine. Fundam Clin Pharmacol. 2006;20:247–53. https://doi.org/10.1111/j.1472-8206.2006.00401.x.

    Article  CAS  PubMed  Google Scholar 

  40. Zaeri S, Emamghoreishi M. Acute and chronic effects of n-acetylcysteine on pentylenetetrazole-induced seizure and neuromuscular coordination in mice. Iran J Med Sci. 2015;40:118–24.

    PubMed  PubMed Central  Google Scholar 

  41. Tallarico M, Leo A, Guarnieri L, Zito MC, De Caro C, Nicoletti F, et al. N-acetylcysteine aggravates seizures while improving depressive-like and cognitive impairment comorbidities in the WAG/Rij rat model of absence epilepsy. Mol Neurobiol. 2022;59:2702–14. https://doi.org/10.1007/s12035-021-02720-3.

    Article  CAS  PubMed  Google Scholar 

  42. Mason CR, Cooper RM. A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of Pentylenetetrazol*. Epilepsia. 1972;13:663–74. https://doi.org/10.1111/j.1528-1157.1972.tb04401.x.

    Article  CAS  PubMed  Google Scholar 

  43. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci. 2012;58:9371–93712. https://doi.org/10.1002/0471142301.ns0937s58.

    Article  Google Scholar 

  44. Davoudi M, Shojaei A, Palizvan MR, Javan M, Mirnajafi-Zadeh J. Comparison between standard protocol and a novel window protocol for induction of pentylenetetrazol kindled seizures in the rat. Epilepsy Res. 2013;106:54–63. https://doi.org/10.1016/j.eplepsyres.2013.03.016.

    Article  CAS  PubMed  Google Scholar 

  45. Essawy AE, El-Sayed SA, Tousson E, Abd El-Gawad HS, Alhasani RH, Abd Elkader H-TAE. Anti-kindling effect of Ginkgo biloba leaf extract and l-carnitine in the pentylenetetrazol model of epilepsy. Environ Sci Pollut Res Int. 2022;29:48573–87. https://doi.org/10.1007/s11356-022-19251-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tashakori-Miyanroudi M, Ramazi S, Hashemi P, Nazari-Serenjeh M, Baluchnejadmojarad T, Roghani M. Acetyl-l-carnitine exerts neuroprotective and anticonvulsant effect in kainate murine model of temporal lobe epilepsy. J Mol Neurosci. 2022;72:1224–33. https://doi.org/10.1007/s12031-022-01999-8.

    Article  CAS  PubMed  Google Scholar 

  47. Dhaliwal JS, Rosani A, Saadabadi A. Diazepam. Treasure Island: StatPearls Publishing; 2023.

    Google Scholar 

  48. Choo BKM, Kundap UP, Kumari Y, Hue S-M, Othman I, Shaikh MF. Orthosiphon stamineus leaf extract affects TNF-α and seizures in a zebrafish model. Front Pharmacol. 2018;9:139. https://doi.org/10.3389/fphar.2018.00139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. da Silva AW, Ferreira MKA, Rebouças EL, Mendes FRS, Dos S Moura AL, de Menezes JESA, et al. Anxiolytic-like effect of natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus in adult zebrafish via serotonergic neuromodulation involvement of the 5-HT system. Naunyn Schmiedebergs Arch Pharmacol. 2021;394:2023–32. https://doi.org/10.1007/s00210-021-02116-z.

    Article  CAS  PubMed  Google Scholar 

  50. Kumari S, Sharma P, Mazumder AG, Rana AK, Sharma S, Singh D. Development and validation of chemical kindling in adult zebrafish: a simple and improved chronic model for screening of antiepileptic agents. J Neurosci Methods. 2020;346: 108916. https://doi.org/10.1016/j.jneumeth.2020.108916.

    Article  CAS  PubMed  Google Scholar 

  51. Kundap UP, Kumari Y, Othman I, Shaikh MF. Zebrafish as a model for epilepsy-induced cognitive dysfunction: a pharmacological. Biochem Behav Approach Front Pharmacol. 2017;8:515. https://doi.org/10.3389/fphar.2017.00515.

    Article  CAS  Google Scholar 

Download references

Funding

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, proc. 303343/2020-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES), and Pró-Reitoria de Pesquisa (PROPESQ) at Universidade Federal do Rio Grande do Sul (UFRGS) for funding and support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, RC, and AP; methodology, RC, CGR, RB, TSB, AL, MM, AP; investigation, RC, CGR, RB, TSB, AL, MM; formal analysis, RC, CGR, RB, TSB, AL, MM, AP; resources, AP; writing—original draft, RC; writing—review and editing, RC, CGR, RB, TSB, AL, MM, APH, AP; supervision, AP; funding acquisition, AP.

Corresponding author

Correspondence to Angelo Piato.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitolina, R., Reis, C.G., Stahlhofer-Buss, T. et al. Effects of N-acetylcysteine and acetyl-l-carnitine on acute PTZ-induced seizures in larval and adult zebrafish. Pharmacol. Rep 75, 1544–1555 (2023). https://doi.org/10.1007/s43440-023-00536-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00536-7

Keywords

Navigation