Log in

Biofilm-associated genes as potential molecular targets of nano-Fe3O4 in Candida albicans

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

There are few effective treatments for Candida biofilm-associated infections. The present study demonstrated changes in the expression of biofilm-associated genes in Candida albicans treated with magnetic iron oxide nanoparticles (denoted as nano-Fe3O4).

Methods

Nano-Fe3O4 was biologically synthesized using Bacillus licheniformis, Bacillus cereus, and Fusarium oxysporum. Additionally, the biologically synthesized nano-Fe3O4 was characterized by visual observation; ultraviolet–visible spectroscopy, scanning electron microscopy, X-ray diffraction spectroscopy, and Fourier transform infrared spectroscopy. The biologically synthesized nano-Fe3O4 was tested for growth and biofilm formation in C. albicans. Furthermore, quantitative real-time reverse transcriptase–polymerase chain reaction (RT-PCR) was used to study the inhibition of biofilm-associated genes in C. albicans treated with nano-Fe3O4.

Results

The production of biologically synthesized nano-Fe3O4 was confirmed using extensive characterization methods. The nano-Fe3O4 inhibited growth and biofilm formation. Nano-Fe3O4 exhibited growth inhibition with minimum inhibition concentrations (MICs) of 50 to 200 μg mL−1. The anti-biofilm effects of nano-Fe3O4 were shown by 2,3-bis (2-methoxy-4-nitro-5 sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay, crystal violet staining, and light field microscopy. The gene expression results showed that the downregulation of BCR1, ALS1, ALS3, HWP1, and ECE1 genes inhibited the biofilm formation in C. albicans. ALS1 reduction was greater than others, with downregulation of 1375.83-, 1178.71-, and 768.47-fold at 2 × MIC, 1 × MIC, and ½ × MIC of nano-Fe3O4, respectively.

Conclusion

Biofilm-associated genes as potential molecular targets of nano-Fe3O4 in C. albicans may be an effective novel treatment strategy for biofilm-associated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data generated/analyzed during this study are included in the article and its supplementary information files or are available on request from the corresponding author.

Abbreviations

ALS :

Agglutinin-like protein

ANOVA:

Analysis of variance

BCR1 :

Biofilm and cell wall regulator 1

BRG1 :

Biofilm regulator 1

cDNA:

Complementary DNA

CDR1 :

Candida Drug resistance 1

CEK1-MAPK:

Candida albicans extracellular signal-regulated kinase 1-Mitogen-activated protein kinase

CV:

Crystal violet

EAP1 :

Enhanced adherence to polystyrene 1

ECE1 :

Extent of cell elongation 1

EFG1 :

Enhanced filamentous growth protein 1

ERG11 :

Ergosterol biosynthesis gene 11

FAV2 :

Factor activated 2

FCC:

Face-centered cubic

FDA:

Food and drug administration

FTIR:

Fourier transform infrared

GM:

Geometric mean

GSC1 :

Glucan synthase catalytic subunit 1

HWP1 :

Hyphal-specific wall protein 1

HYR1 :

Hyphally regulated 1

ICDD:

International centre of diffraction data

IFF :

Individual protein file family F

MDR1 :

Multidrug resistance 1

MFC:

Minimum fungicidal concentration

MIC:

Minimum inhibition concentration

MNN1 :

Mannosyl transferase 1

MSB2 :

Multicopy suppressor of bud emergence 2

NDT80 :

Non-dityrosine 80

ORF:

Open reading frame

PBS:

Phosphate-buffered saline

PGA :

Putative glycosylphosphatidylinositol-anchored proteins

Ras-cAMP-EFG1 :

Rat sarcoma- cyclic adenosine monophosphate-Enhanced filamentous growth protein 1

RCF:

Relative centrifugal force

ROB1 :

Regulator of biofilm 1

RPM:

Revolutions per minute

RPMI:

Roswell park memorial institute medium

RT-PCR:

Real-time reverse transcriptase–Polymerase chain reaction

SEM:

Scanning electron microscopy

SIM1 :

Secreted beta-glucosidase 1

TEC1 :

Transposon enhancement control 1

UV–Vis:

Ultraviolet–visible

XRD:

X-ray diffraction

XTT:

2,3-Bis (2-methoxy-4-nitro-5 sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide

References

  1. Laha SS, Abdelhamid E, Arachchige MP, Kumar A, Dixit A. Ferroic ordering and charge-spin-lattice order coupling in Gd-doped Fe3O4 nanoparticles relaxor multiferroic system. J Am Ceram Soc. 2017;100:1534–41.

    Article  CAS  Google Scholar 

  2. Nguyen MD, Tran HV, Xu S, Lee TR. Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl Sci. 2021;11:11301.

    Article  CAS  PubMed  Google Scholar 

  3. Abbas HS, Krishnan A. Magnetic nanosystems as a therapeutic tool to combat pathogenic fungi. Adv Pharm Bull. 2020;10:512–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, et al. Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications. Front Chem. 2021;9: 629054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ashraf H, Batool T, Anjum T, Illyas A, Li G, Naseem S, et al. Antifungal potential of green synthesized magnetite nanoparticles black coffee-magnetite nanoparticles against wilt infection by ameliorating enzymatic activity and gene expression in Solanum lycopersicum L. Front Microbiol. 2022;13: 754292.

    PubMed  PubMed Central  Google Scholar 

  6. Shah IH, Manzoor MA, Sabir IA, Ashraf M, Gulzar S, Chang L, et al. A green and environmental sustainable approach to synthesis the Mn oxide nanomaterial from Punica granatum leaf extracts and its in vitro biological applications. Environ Monit Assess. 2022;194:921.

    Article  CAS  PubMed  Google Scholar 

  7. Salem DM, Ismail MM, Aly-Eldeen MA. Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea. Egypt Egypt J Aquat Res. 2019;45:197–204.

    Article  Google Scholar 

  8. Iqbal J, Abbasi BA, Ahmad R, Shahbaz A, Zahra SA, Kanwal S, et al. Biogenic synthesis of green and cost effective iron nanoparticles and evaluation of their potential biomedical properties. J Mol Struct. 2020;1199: 126979.

    Article  CAS  Google Scholar 

  9. Biswas A, Vanlalveni C, Lalfakzuala R, Nath S, Rokhum L. Mikania mikrantha leaf extract mediated biogenic synthesis of magnetic iron oxide nanoparticles: characterization and its antimicrobial activity study. Mater Today Proc. 2021;42:1366–73.

    Article  CAS  Google Scholar 

  10. Paluch E, Szperlik J, Lamch Ł, Wilk KA, Obłąk E. Biofilm eradication and antifungal mechanism of action against Candida albicans of cationic dicephalic surfactants with a labile linker. Sci Rep. 2021;11:8896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Centers for Disease Control and Prevention. CDC antibiotic resistance threats in the United States, 2019. https://www.cdc.gov/drugresistance/biggest-threats. html. Accessed 20 April 2021.

  12. Pohl CH. Recent advances and opportunities in the study of Candida albicans polymicrobial biofilms. Front Cell Infect Microbiol. 2022;12: 836379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naglik JR, Gaffen SL, Hube B. Candidalysin: discovery and function in Candida albicans infections. Curr Opin Microbiol. 2019;52:100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pereira R, dos Santos Fontenelle RO, de Brito EH, de Morais SM. Biofilm of Candida albicans: formation, regulation and resistance. J Appl Microbiol. 2021;131:11–22.

    Article  CAS  PubMed  Google Scholar 

  15. Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, et al. Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Front Microbiol. 2021;12: 638609.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fox EP, Bui CK, Nett JE, Hartooni N, Mui MC, Andes DR, et al. An Expanded regulatory network temporally controls Candida albicans biofilm formation. Mol Microbiol. 2015;96:1226–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niemirowicz K, Durnaś B, Tokajuk G, Piktel E, Michalak G, Gu X, et al. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep. 2017;7:4610.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vera-González N, Shukla A. Advances in biomaterials for the prevention and disruption of Candida Biofilms. Front Microbiol. 2020;11:538602.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zare-Khafri M, Alizadeh F, Nouripour-Sisakht S, Khodavandi A, Gerami M. Inhibitory effect of magnetic iron-oxide nanoparticles on the pattern of expression of lanosterol 14α-demethylase (ERG11) in fluconazole-resistant colonising isolate of Candida albicans. IET Nanobiotechnol. 2020;14:375–81.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Halbandge SD, Jadhav AK, Jangid PM, Shelar AV, Patil RH, Karuppayil SM. Molecular targets of biofabricated silver nanoparticles in Candida albicans. J Antibiot. 2019;72:640–4.

    Article  CAS  Google Scholar 

  21. Sun L, Liao K, Wang D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS ONE. 2015;10: e0117695.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fazly A, Jain C, Dehner AC, Issi L, Lilly EA, Ali A, et al. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis. Proc Natl Acad Sci USA. 2013;110:13594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett. 2008;62:4411–3.

    Article  CAS  Google Scholar 

  24. Sundaram PA, Augustine R, Kannan M. Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioproc E. 2012;17:835–40.

    Article  CAS  Google Scholar 

  25. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, et al. Extracellular biosynthesis of magnetite using fungi. Small. 2006;2:135–41.

    Article  CAS  PubMed  Google Scholar 

  26. Pfaller MA, Sheehan DJ, Rex JH. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev. 2004;17:268–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ganan M, Lorentzen SB, Agger JW, Heyward CA, Bakke O, Knutsen SH, et al. Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts. PLoS ONE. 2019;14: e0210208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khodavandi A, Harmal NS, Alizadeh F, Scully OJ, Sidik SM, Othman F, et al. Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine. 2011;19:56–63.

    Article  CAS  PubMed  Google Scholar 

  29. De Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods. 2012;9:690–6.

    Article  PubMed  Google Scholar 

  30. Rocha FA, Alves AM, Rocha MF, Cordeiro RD, Brilhante RS, Pinto AC, et al. Tumor necrosis factor prevents Candida albicans biofilm formation. Sci Rep. 2017;7:1206.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goyard S, Knechtle P, Chauvel M, Mallet A, Prévost MC, Proux C, et al. The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol Biol Cell. 2008;19:2251–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.

    Article  CAS  PubMed  Google Scholar 

  33. Cichoń M. Reporting statistical methods and outcome of statistical analyses in research articles. Pharmacol Rep. 2020;72:481–5.

    Article  PubMed  Google Scholar 

  34. Iconaru SL, Guégan R, Popa CL, Motelica-Heino M, Ciobanu CS, Predoi D. Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. App Clay Sci. 2016;134:128–35.

    Article  CAS  Google Scholar 

  35. Win TT, Khan S, Bo B, Zada S, Fu P. Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Sci Rep. 2021;11:21996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pistoia ES, Cosio T, Campione E, Pica F, Volpe A, Marino D, et al. All-trans retinoic acid effect on Candida albicans growth and biofilm formation. J Fungi. 2022;8:1049.

    Article  CAS  Google Scholar 

  37. Jacinto MJ, Silva VC, Valladão DM, Souto RS. Biosynthesis of magnetic iron oxide nanoparticles: a review. Biotechnol Lett. 2021;43:1–12.

    Article  CAS  PubMed  Google Scholar 

  38. Kaur K, Sidhu AK. Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Front Nanotechnol. 2021;3: 655062.

    Article  Google Scholar 

  39. Khan S, Akhtar N, Rehman SU, Shujah S, Rha ES, Jamil M. Biosynthesized iron oxide nanoparticles (Fe3O4 NPs) mitigate arsenic toxicity in rice seedlings. Toxics. 2020;9:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seddighi NS, Salari S, Izadi AR. Evaluation of antifungal effect of ironoxide nanoparticles against different Candida species. IET Nanobiotechnol. 2017;11:883–8.

    Article  PubMed Central  Google Scholar 

  41. Adhikari A, Chhetri K, Acharya D, Pant B, Adhikari A. Green synthesis of iron oxide nanoparticles using Psidium guajava L. leaves extract for degradation of organic dyes and anti-microbial applications. Catalysts. 2022;12:1188.

    Article  CAS  Google Scholar 

  42. Alangari A, Alqahtani MS, Mateen A, Kalam MA, Alshememry A, Ali R, et al. Iron oxide nanoparticles: preparation, characterization, and assessment of antimicrobial and anticancer activity. Adsorp Sci Technol. 2022;2022:1–9.

    Article  Google Scholar 

  43. Attia NF, Abd El-Monaem EM, El-Aqapa HG, Elashery SE, Eltaweil AS, El Kady M, et al. Iron oxide nanoparticles and their pharmaceutical applications. Appl Surf Sci Adv. 2022;11: 100284.

    Article  Google Scholar 

  44. Zou F, Xu J, Yuan L, Zhang Q, Jiang L. Recent progress on smart hydrogels for biomedicine and bioelectronics. Biosurf Biotribol. 2022;8:212–24.

    Article  Google Scholar 

  45. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, et al. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans.” Front Microbiol. 2018;9:1441.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Khalid HF, Tehseen B, Sarwar Y, Hussain SZ, Khan WS, Raza ZA, et al. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties. J Hazard Mater. 2019;364:441–8.

    Article  CAS  PubMed  Google Scholar 

  47. Alherz FA, Negm WA, Elekhnawy E, El-Masry TA, Haggag EM, Alqahtani MJ, et al. Silver nanoparticles prepared using Encephalartos laurentianus de wild leaf extract have inhibitory activity against Candida albicans clinical isolates. J Fungi. 2022;8:1005.

    Article  CAS  Google Scholar 

  48. Wunnoo S, Paosen S, Lethongkam S, Sukkurd R, Waen-ngoen T, Nuidate T, et al. Biologically rapid synthesized silver nanoparticles from aqueous Eucalyptus camaldulensis leaf extract: effects on hyphal growth, hydrolytic enzymes, and biofilm formation in Candida albicans. Biotechnol Bioeng. 2021;118:1597–611.

    Article  CAS  PubMed  Google Scholar 

  49. Judan Cruz KG, Alfonso ED, Fernando SID, Watanabe K. Candida albicans biofilm inhibition by ethnobotanicals and ethnobotanically-synthesized gold nanoparticles. Front Microbiol. 2021;12: 665113.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep. 2016;6:26667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Islamic Azad University of Shiraz for infrastructure facilities. The results presented in this study are part of a PhD thesis (IR.IAU.SHIRAZ.REC.1401.034).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

AK, FA, and NB: made substantial contributions to the conception and design of the study. MBE, AK, and FA: conducted the search, analyzed the data, and wrote the manuscript. All authors read and approved the final content.

Corresponding author

Correspondence to Alireza Khodavandi.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghiat Esfahani, M., Khodavandi, A., Alizadeh, F. et al. Biofilm-associated genes as potential molecular targets of nano-Fe3O4 in Candida albicans. Pharmacol. Rep 75, 682–694 (2023). https://doi.org/10.1007/s43440-023-00467-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00467-3

Keywords

Navigation