Log in

Chloroquine prevents hypoxic accumulation of HIF-1α by inhibiting ATR kinase: implication in chloroquine-mediated chemosensitization of colon carcinoma cells under hypoxia

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Chloroquine (CQ) is an effective and safe antimalarial drug that is also used as a disease-modifying antirheumatic drug. Recent studies have shown that CQ can sensitize cancer cells to anti-cancer therapies.

Methods

In this study, we investigated the molecular mechanisms underlying CQ-mediated chemosensitization in human colon carcinoma cells.

Results

CQ prevented hypoxia-inducible factor (HIF)-1α protein induction in human colon carcinoma cells. CQ also suppressed HIF-1 activity, as represented by CQ inhibition of HIF-1-dependent luciferase activity and reduced induction of vascular endothelial growth factor. Under hypoxia, CQ restricted HIF-1α synthesis but did not affect HIF-1α transcription and protein stability. The hypoxic state activated ataxia telangiectasia and Rad3-related (ATR) kinase and increased the level of phosphorylated checkpoint kinase 1, a substrate of ATR kinase; however, this was prevented by CQ. An ATR kinase inhibitor suppressed the hypoxic induction of HIF-1α protein and was as effective as CQ. The cytotoxicity of 5-fluorouracil (5-FU), the first choice for the treatment of colorectal cancer, was attenuated under hypoxia. CQ enhanced the cytotoxicity of 5-FU treatment, which was mimicked by the transient transfection with HIF-1α siRNA.

Conclusions

Under hypoxia, CQ-mediated sensitization of colon carcinoma HCT116 cells to 5-FU involves HIF-1 inhibition via ATR kinase suppression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data presented in this study are available in article or supplementary material here.

Abbreviations

ATR:

Ataxia telangiectasia and Rad3 related

Chk1:

Checkpoint kinase 1

CHX:

Cycloheximide

CQ:

Chloroquine

DMEM:

Dulbecco’s modified Eagle’s medium

4E-BP1:

Eukaryotic initiation factor 4E-binding protein 1

ELISA:

Enzyme-linked immunosorbent assay

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HIF:

Hypoxia-inducible factor

LD:

Lysosomal degradation

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

mTOR:

Mammalian target of rapamycin

NM:

Not measurable

n.s:

No significant

S6K:

Ribosomal protein S6 kinase β-1

SD:

Standard deviation

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

SiH:

HIF-1α siRNA

SiC:

Control siRNA

TBP:

TATA binding protein

VHL:

Von Hippel-Lindau

VEGF:

Vascular endothelial growth factor

3-MA:

3-Methyladenine

5-FU:

5-Fluorouracil

References

  1. Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ. Hypoxia signaling: challenges and opportunities for cancer therapy. Semin Cancer Biol. 2021;85:185–95.

    Article  Google Scholar 

  2. Dzhalilova DS, Makarova OV. HIF-dependent mechanisms of relationship between hypoxia tolerance and tumor development. Biochemistry (Mosc). 2021;86(10):1163–80.

    Article  CAS  Google Scholar 

  3. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 1998;95(14):7987–92.

    Article  CAS  Google Scholar 

  4. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001;294(5545):1337–40.

    Article  CAS  Google Scholar 

  5. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.

    Article  CAS  Google Scholar 

  6. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.

    Article  CAS  Google Scholar 

  7. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998;8(5):588–94.

    Article  CAS  Google Scholar 

  8. Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF. Hypoxia inducible factor-1alpha: its role in colorectal carcinogenesis and metastasis. Cancer Lett. 2015;366(1):11–8.

    Article  CAS  Google Scholar 

  9. Ioannou M, Paraskeva E, Baxevanidou K, Simos G, Papamichali R, Papacharalambous C, et al. HIF-1alpha in colorectal carcinoma: review of the literature. J BUON. 2015;20(3):680–9.

    Google Scholar 

  10. Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, et al. Up-down regulation of HIF-1alpha in cancer progression. Gene. 2021;798: 145796.

    Article  CAS  Google Scholar 

  11. Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer. 2016;2(12):758–70.

    Article  Google Scholar 

  12. **g X, Yang F, Shao C, Wei K, **e M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):157.

    Article  Google Scholar 

  13. Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las RJ, et al. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat. 2021;59:100787.

    Article  CAS  Google Scholar 

  14. Ghattass K, Assah R, El-Sabban M, Gali-Muhtasib H. Targeting hypoxia for sensitization of tumors to radio- and chemotherapy. Curr Cancer Drug Targets. 2013;13(6):670–85.

    Article  CAS  Google Scholar 

  15. Unruh A, Ressel A, Mohamed HG, Johnson RS, Nadrowitz R, Richter E, et al. The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene. 2003;22(21):3213–20.

    Article  CAS  Google Scholar 

  16. Karakashev SV, Reginato MJ. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy. Cancer Manag Res. 2015;7:253–64.

    CAS  Google Scholar 

  17. Wigerup C, Pahlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152–69.

    Article  CAS  Google Scholar 

  18. Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009;625(1–3):220–33.

    Article  CAS  Google Scholar 

  19. Fauzi YR, Nakahata S, Chilmi S, Ichikawa T, Nueangphuet P, Yamaguchi R, et al. Antitumor effects of chloroquine/hydroxychloroquine mediated by inhibition of the NF-kappaB signaling pathway through abrogation of autophagic p47 degradation in adult T-cell leukemia/lymphoma cells. PLoS ONE. 2021;16(8):e0256320.

    Article  CAS  Google Scholar 

  20. Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019;134:116–37.

    Article  CAS  Google Scholar 

  21. Ferreira PMP, Sousa RWR, Ferreira JRO, Militao GCG, Bezerra DP. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol Res. 2021;168: 105582.

    Article  CAS  Google Scholar 

  22. Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy. 2012;8(2):200–12.

    Article  CAS  Google Scholar 

  23. Jeong S, Kang C, Park S, Ju S, Yoo JW, Yoon IS, et al. Eletrophilic chemistry of tranilast is involved in its anti-colitic activity via Nrf2-HO-1 pathway activation. Pharmaceuticals (Basel). 2021;14(11):1092.

    Article  CAS  Google Scholar 

  24. Lee Y, Kim SJ, Choo J, Heo G, Yoo J-W, Jung Y, et al. miR-23a-3p is a key regulator of IL-17C-induced tumor angiogenesis in colorectal cancer. Cells. 2020;9(6):1363.

    Article  CAS  Google Scholar 

  25. Masoud GN, Li W. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5(5):378–89.

    Article  Google Scholar 

  26. Bouquet F, Ousset M, Biard D, Fallone F, Dauvillier S, Frit P, et al. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. J Cell Sci. 2011;124(Pt 11):1943–51.

    Article  CAS  Google Scholar 

  27. Fallone F, Britton S, Nieto L, Salles B, Muller C. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression. Oncogene. 2013;32(37):4387–96.

    Article  CAS  Google Scholar 

  28. Prevo R, Fokas E, Reaper PM, Charlton PA, Pollard JR, McKenna WG, et al. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol Ther. 2012;13(11):1072–81.

    Article  CAS  Google Scholar 

  29. Dai Y, Chen S, Kmieciak M, Zhou L, Lin H, Pei XY, et al. The novel Chk1 inhibitor MK-8776 sensitizes human leukemia cells to HDAC inhibitors by targeting the intra-S checkpoint and DNA replication and repair. Mol Cancer Ther. 2013;12(6):878–89.

    Article  CAS  Google Scholar 

  30. Damjanov N, Meropol NJ. Oral therapy for colorectal cancer: how to choose. Oncology (Williston Park). 2000;14(6):799–807 (discussion 807–8, 813–4).

    CAS  Google Scholar 

  31. Thongchot S, Loilome W, Yongvanit P, Dokduang H, Thanan R, Techasen A, et al. Chloroquine exerts anti-metastatic activities under hypoxic conditions in cholangiocarcinoma cells. Asian Pac J Cancer Prev. 2015;16(5):2031–5.

    Article  Google Scholar 

  32. Yan ZW, Hou JK, He W, Fan L, Huang Y. Chloroquine enhances cobalt chloride-induced leukemic cell differentiation via the suppression of autophagy at the late phase. Biochem Biophys Res Commun. 2013;430(3):926–32.

    Article  CAS  Google Scholar 

  33. Zhang Y, Li Y, Li Y, Li R, Ma Y, Wang H, et al. Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway. Mol Med Rep. 2015;11(2):1366–71.

    Article  CAS  Google Scholar 

  34. Munoz-Sanchez J, Chanez-Cardenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019;39(4):556–70.

    Article  CAS  Google Scholar 

  35. Hubbi M, Hu H, Kshitiz Ahmed I, Levchenko A, Semenza GL. Chaperone-mediated autophagy targets hypoxia-inducible factor-1alpha (HIF-1alpha) for lysosomal degradation. J Biol Chem. 2013;288:10703–14.

    Article  CAS  Google Scholar 

  36. Wu K, Zhang Q, Wu X, Lu W, Tang H, Liang Z, et al. Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia-induced pulmonary hypertension. Br J Pharmacol. 2017;174(22):4155–72.

    Article  CAS  Google Scholar 

  37. Jung HJ, Kim JH, Shim JS, Kwon HJ. A novel Ca2+/calmodulin antagonist HBC inhibits angiogenesis and down-regulates hypoxia-inducible factor. J Biol Chem. 2010;285(33):25867–74.

    Article  CAS  Google Scholar 

  38. Li Z, Wang-Heaton H, Cartwright BM, Makinwa Y, Hilton BA, Musich PR, et al. ATR prevents Ca2+ overload-induced necrotic cell death through phosphorylation-mediated inactivation of PARP1 without DNA damage signaling. The FASEB J. 2021;35(5): e21373.

    Article  CAS  Google Scholar 

  39. Lang KJ, Kappel A, Goodall GJ. Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell. 2002;13(5):1792–801.

    Article  CAS  Google Scholar 

  40. Vadysirisack DD, Ellisen LW. mTOR activity under hypoxia. Methods Mol Biol. 2012;821:45–58.

    Article  CAS  Google Scholar 

  41. Ding M, Van der Kwast TH, Vellanki RN, Foltz WD, McKee TD, Sonenberg N, et al. The mTOR targets 4E-BP1/2 restrain tumor growth and promote hypoxia tolerance in PTEN-driven prostate cancer. Mol Cancer Res. 2018;16(4):682–95.

    Article  CAS  Google Scholar 

  42. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421(6922):499–506.

    Article  CAS  Google Scholar 

  43. Qian M, Liu Z, Peng L, Tang X, Meng F, Ao Y, et al. Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria. Elife. 2018;7: e34836.

    Article  Google Scholar 

  44. So EY, Ausman M, Saeki T, Ouchi T. Phosphorylation of SMC1 by ATR is required for desferrioxamine (DFO)-induced apoptosis. Cell Death Dis. 2011;2: e128.

    Article  CAS  Google Scholar 

  45. Fang Y, Tan J, Zhang Q. Signaling pathways and mechanisms of hypoxia-induced autophagy in the animal cells. Cell Biol Int. 2015;39(8):891–8.

    Article  CAS  Google Scholar 

  46. Chen Y, Sun L, Guo D, Wu Z, Chen W. Co-delivery of hypoxia inducible factor-1alpha small interfering RNA and 5-fluorouracil to overcome drug resistance in gastric cancer SGC-7901 cells. J Gene Med. 2017. https://doi.org/10.1002/jgm.2998.

    Article  Google Scholar 

  47. Zhao Q, Tan BB, Li Y, Fan LQ, Yang PG, Tian Y. Enhancement of drug sensitivity by knockdown of HIF-1alpha in gastric carcinoma cells. Oncol Res. 2016;23(3):129–36.

    Article  Google Scholar 

  48. Dong S, Liang S, Cheng Z, Zhang X, Luo L, Li L, et al. ROS/PI3K/Akt and Wnt/beta-catenin signalings activate HIF-1alpha-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J Exp Clin Cancer Res. 2022;41(1):15.

    Article  CAS  Google Scholar 

  49. Wen W, Ding J, Sun W, Wu K, Ning B, Gong W, et al. Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. Cancer Res. 2010;70(5):2010–9.

    Article  CAS  Google Scholar 

  50. Xu G, Li M, Wu J, Qin C, Tao Y, He H. Circular RNA circNRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1alpha-dependent glucose metabolism in gastric carcinoma. Cancer Manag Res. 2020;12:2789–802.

    Article  CAS  Google Scholar 

  51. Yoshiba S, Ito D, Nagumo T, Shirota T, Hatori M, Shintani S. Hypoxia induces resistance to 5-fluorouracil in oral cancer cells via G(1) phase cell cycle arrest. Oral Oncol. 2009;45(2):109–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2-Year Research grant from the Pusan National University.

Funding

This work was supported by a 2-year research grant from the Pusan National University.

Author information

Authors and Affiliations

Authors

Contributions

CK: investigation, formal analysis, data curation, and writing—original draft; SJ, and JK: validation and data curation; YJ: writing—review and editing, conceptualization, supervision, and funding acquisition.

Corresponding author

Correspondence to Yun** Jung.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4079 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, C., Ju, S., Kim, J. et al. Chloroquine prevents hypoxic accumulation of HIF-1α by inhibiting ATR kinase: implication in chloroquine-mediated chemosensitization of colon carcinoma cells under hypoxia. Pharmacol. Rep 75, 211–221 (2023). https://doi.org/10.1007/s43440-022-00441-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00441-5

Keywords

Navigation