Log in

GSK-3β-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Movement disorders are neurological conditions characterized by involuntary motor movements, such as dystonia, ataxia, chorea myoclonus, tremors, Huntington’s disease (HD), and Parkinson’s disease (PD). It is classified into two categories: hypokinetic and hyperkinetic movements. Globally, movement disorders are a major cause of death. The pathophysiological process is initiated by excessive ROS generation, mitochondrial dysfunction, neuroinflammation, and neurotransmitters imbalance that lead to motor dysfunction in PD and HD patients. Several endogenous targets including Nrf2 maintain oxidative balance in the body. Activation of Nrf2 signaling is regulated by the enzyme glycogen synthase kinase (GSK-3β). In the cytoplasm, inhibition of GSK-3β regulates cellular proliferation, homeostasis, and apoptotic process by stimulating the nuclear factor erythroid 2 (Nrf2) pathway which is involved in the elevation of the cellular antioxidant enzymes which controls the ROS generation. The activation of Nrf2 increases the expression of antioxidant response elements (ARE), such as (Hemeoxygenase-1) HO-1, which decreases excessive cellular stress, mitochondrial dysfunction, apoptosis, and neuronal degeneration, which is the major cause of motor dysfunction. The present review explores the GSK-3β-mediated neuroprotection in various movement disorders through the Nrf2/HO-1 antioxidant pathway. This review provides a link between GSK-3β and the Nrf2/HO-1 signaling pathway in the treatment of PD and HD. In addition to that it highlights various GSK-3β inhibitors and the Nrf2/HO-1 activators, which exert robust neuroprotection against motor disorders. Therefore, the present review will help in the discovery of new therapy for PD and HD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Murthy M, Cheng YY, Holton JL, Bettencourt C. Neurodegenerative movement disorders: an epigenetics perspective and promise for the future. Neuropathol Appl Neurobiol. 2021;47(7):897–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang X, Li N, Pu Y, Zhang T, Wang B. Neuroprotective effects of ginseng phytochemicals: recent perspectives. Molecules. 2019;24(16):2939.

    Article  CAS  PubMed Central  Google Scholar 

  3. Moscovich M, LaFaver K, Maetzler W. Functional movement disorder in older adults, in functional movement disorder. Berlin: Springer; 2022. p. 197–203.

    Book  Google Scholar 

  4. Navarro-Lopez EM, Çelikok U, Şengör NS. A dynamical model for the basal ganglia-thalamo-cortical oscillatory activity and its implications in Parkinson’s disease. Cogn Neurodyn. 2021;15(4):693–720.

    Article  PubMed  Google Scholar 

  5. Callahan JW, Wokosin DL, Bevan MD. Dysregulation of the basal Ganglia indirect pathway in early symptomatic q175 Huntington’s disease mice. J Neurosci. 2022;42(10):2080–102.

    Article  CAS  PubMed  Google Scholar 

  6. Bento-Pereira C, Dinkova-Kostova AT. Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson’s disease. Med Res Rev. 2021;41(2):785–802.

    Article  PubMed  Google Scholar 

  7. Albert K, Raymundo DP, Panhelainen A, Eesmaa A, Shvachiy L, Araújo GR, et al. Cerebral dopamine neurotrophic factor reduces α-synuclein aggregation and propagation and alleviates behavioral alterations in vivo. Mol Ther. 2021;29(9):2821–40.

    Article  CAS  PubMed  Google Scholar 

  8. Jayaram S, Krishnamurthy PT. Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of parkinson’s disease: the therapeutic role of Nrf2 activators. Neurochem Int. 2021;145: 105014.

    Article  CAS  PubMed  Google Scholar 

  9. Angelopoulou E, Paudel YN, Julian T, Shaikh MF, Piperi C. Pivotal role of Fyn kinase in Parkinson’s disease and levodopa-induced dyskinesia: a novel therapeutic target? Mol Neurobiol. 2021;58(4):1372–91.

    Article  CAS  PubMed  Google Scholar 

  10. Claassen DO, Ayyagari R, Garcia-Horton V, Zhang S, Alexander J, Leo S. Real-world adherence to tetrabenazine or deutetrabenazine among patients with huntington’s disease: a retrospective database analysis. Neurology and Therapy. 2022;11(1):435–48.

    Article  PubMed  Google Scholar 

  11. Sivanandy P, Leey TC, **ang TC, Ling TC, Wey Han SA, Semilan SLA, et al. Systemic review on parkinson’s disease medications, emphasizing on three recently approved drugs to control Parkinson’s symptoms. Int J Environ Res Public Health. 2022;19(1):364.

    Article  CAS  Google Scholar 

  12. Avcı B, Günaydın C, Güvenç T, Yavuz CK, Kuruca N, Bilge SS. Idebenone ameliorates rotenone-induced Parkinson’s disease in rats through decreasing lipid peroxidation. Neurochem Res. 2021;46(3):513–22.

    Article  PubMed  CAS  Google Scholar 

  13. Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020;16(10):529–46.

    Article  PubMed  Google Scholar 

  14. Hua K-F, Chao A-C, Lin T-Y, Chen W-T, Lee Y-C, Hsu W-H, et al. Ginsenoside compound K reduces the progression of Huntington’s disease via the inhibition of oxidative stress and overactivation of the Atm/Ampk pathway. J Ginseng Res. 2021;2:2.

    Google Scholar 

  15. Crowell V, Houghton R, Tomar A, Fernandes T, Squitieri F. Modeling manifest Huntington’s disease prevalence using diagnosed incidence and survival time. Neuroepidemiology. 2021;55(5):361–8.

    Article  PubMed  Google Scholar 

  16. Maity S, Komal P, Kumar V, Saxena A, Tungekar A, Chandrasekar V. Impact of Er stress and Er-mitochondrial crosstalk in Huntington’s disease. Int J Mol Sci. 2022;23(2):780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deepa S, Rymbai E, Praveen T, Saravanan J. Neuroprotective effects of farnesol on motor and cognitive impairment against 3-nitropropionic acid-induced Huntington’s disease. Thai J Pharm Sci. 2021;45:1.

    Google Scholar 

  18. Naia L, Carmo C, Campesan S, Fao L, Cotton VE, Valero J, et al. Mitochondrial Sirt3 confers neuroprotection in Huntington’s disease by regulation of oxidative challenges and mitochondrial dynamics. Free Radical Biol Med. 2021;163:163–79.

    Article  CAS  Google Scholar 

  19. Hu X, Zhang D, Pang H, Caudle WM, Li Y, Gao H, et al. Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the Mptp model of Parkinson’s disease. J Immunol. 2008;181(10):7194–204.

    Article  CAS  PubMed  Google Scholar 

  20. Kormas P, Moutzouri A. Current psychological approaches in neurodegenerative diseases, in handbook of computational neurodegeneration. Berlin: Springer; 2022. p. 1–29.

    Google Scholar 

  21. Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radical Biol Med. 2015;88:179–88.

    Article  CAS  Google Scholar 

  22. Zeng X-H, Li Q-Q, Xu Q, Li F, Liu C-Z. Acupuncture mechanism and redox equilibrium. Evid-Based Complement Alternat Med. 2014;2:2.

    Google Scholar 

  23. Huang T-I, Hsieh C-L. Effects of acupuncture on oxidative stress amelioration via Nrf2/are-related pathways in Alzheimer and Parkinson diseases. Evid-Based Complement Alternat Med. 2021;2:2.

    Google Scholar 

  24. Zhu J, Xu X, Liang Y, Zhu R. Downregulation of microrna-15b-5p targeting the Akt3-mediated Gsk-3β/Β-catenin signaling pathway inhibits cell apoptosis in Parkinson’s disease. BioMed Res Int. 2021;2:2.

    Google Scholar 

  25. Pederson BA. Structure and regulation of glycogen synthase in the brain. Brain Glycogen Metab. 2019;2:83–123.

    Article  Google Scholar 

  26. Patel P, Woodgett JR. Glycogen synthase kinase 3: a kinase for all pathways? Curr Top Dev Biol. 2017;123:277–302.

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Ma S, Chen J, Hu K, Li Y, Zhang Z, et al. Gsk-3β contributes to parkinsonian dopaminergic neuron death: evidence from conditional knockout mice and tideglusib. Front Mol Neurosci. 2020;13:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Role of glycogen synthase kinase-3β in cardioprotection. Circ Res. 2009;104(11):1240–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Valvezan AJ, Klein PS. Gsk-3 and Wnt signaling in neurogenesis and bipolar disorder. Front Mol Neurosci. 2012;5:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, et al. Glycogen synthase kinase-3 beta (Gsk-3β) signaling: implications for Parkinson’s disease. Pharmacol Res. 2015;97:16–26.

    Article  CAS  PubMed  Google Scholar 

  31. Roca C, Campillo NE. Glycogen synthase kinase 3 (Gsk-3) inhibitors: a patent update (2016–2019). Expert Opin Ther Pat. 2020;30(11):863–72.

    Article  CAS  PubMed  Google Scholar 

  32. Zarneshan SN, Fakhri S, Khan H. Targeting Akt/Creb/Bdnf signaling pathway by ginsenosides in neurodegenerative diseases: a mechanistic approach. Pharmacol Res. 2022;2:106099.

    Article  CAS  Google Scholar 

  33. Sharma N, Khurana N, Muthuraman A, Utreja P. Pharmacological evaluation of vanillic acid in rotenone-induced Parkinson’s disease rat model. Eur J Pharmacol. 2021;903: 174112.

    Article  CAS  PubMed  Google Scholar 

  34. Buyan-Dent L, Mangin T, Shannon KM. Pharmaceutical treatment of Parkinson’s disease. Pract Neurol. 2018;2:2.

    Google Scholar 

  35. Morgante F, Bavikatte G, Anwar F, Mohamed B. The burden of sialorrhoea in chronic neurological conditions: current treatment options and the role of incobotulinumtoxina (Xeomin®). Ther Adv Neurol Disord. 2019;12:1756286419888601.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yamaguchi A, Ishikawa K-i, Inoshita T, Shiba-Fukushima K, Saiki S, Hatano T, et al. Identifying therapeutic agents for amelioration of mitochondrial clearance disorder in neurons of familial Parkinson disease. Stem Cell Rep. 2020;14(6):1060–75.

    Article  CAS  Google Scholar 

  37. Long H-Z, Cheng Y, Zhou Z-W, Luo H-Y, Wen D-D, Gao L-C. Pi3k/Akt signal pathway: a target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front Pharmacol. 2021;12:619.

    Article  Google Scholar 

  38. Zhang L, Cen L, Qu S, Wei L, Mo M, Feng J, et al. Enhancing beta-catenin activity via Gsk3beta inhibition protects Pc12 cells against rotenone toxicity through Nurr1 induction. PLoS ONE. 2016;11(4): e0152931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang W, Yang Y, Ying C, Li W, Ruan H, Zhu X, et al. Inhibition of glycogen synthase kinase-3β protects dopaminergic neurons from Mptp toxicity. Neuropharmacology. 2007;52(8):1678–84.

    Article  CAS  PubMed  Google Scholar 

  40. Morales-García JA, Susín C, Alonso-Gil S, Pérez DI, Palomo V, Pérez C, et al. Glycogen synthase kinase-3 inhibitors as potent therapeutic agents for the treatment of Parkinson disease. ACS Chem Neurosci. 2013;4(2):350–60.

    Article  PubMed  CAS  Google Scholar 

  41. Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J. Glycogen synthase kinase 3β (Gsk3β) mediates 6-hydroxydopamine-induced neuronal death. FASEB J. 2004;18(10):1162–4.

    Article  CAS  PubMed  Google Scholar 

  42. Cuadrado A, Moreno-Murciano P, Pedraza-Chaverri J. The transcription factor Nrf2 as a new therapeutic target in Parkinson’s disease. Expert Opin Ther Targets. 2009;13(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  43. Clark J, Simon DK. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson’s disease. Antioxid Redox Signal. 2009;11(3):509–28.

    Article  CAS  PubMed  Google Scholar 

  44. Valencia A, Reeves PB, Sapp E, Li X, Alexander J, Kegel KB, et al. Mutant huntingtin and glycogen synthase kinase 3-Β accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J Neurosci Res. 2010;88(1):179–90.

    Article  CAS  PubMed  Google Scholar 

  45. Carmichael J, Sugars KL, Bao YP, Rubinsztein DC. Glycogen synthase kinase-3β inhibitors prevent cellular polyglutamine toxicity caused by the huntington’s disease mutation. J Biol Chem. 2002;277(37):33791–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz SMA, Eldar-Finkelman H. Glycogen synthase kinase-3 inhibitors: preclinical and clinical focus on Cns-a decade onward. Front Mol Neurosci. 2021;2:14.

    Google Scholar 

  47. L’episcopo F, Drouin-Ouellet J, Tirolo C, Pulvirenti A, Giugno R, Testa N, et al. Gsk-3β-Induced tau pathology drives hippocampal neuronal cell death in huntington’s disease: involvement of astrocyte-neuron interactions. Cell Death Dis. 2016;7(4):e2206–e2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernández-Nogales M, Hernández F, Miguez A, Alberch J, Ginés S, Pérez-Navarro E, et al. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington’s disease. Hum Mol Genet. 2015;24(17):5040–52.

    Article  PubMed  CAS  Google Scholar 

  49. Rippin I, Bonder K, Joseph S, Sarsor A, Vaks L, Eldar-Finkelman H. Inhibition of Gsk-3 ameliorates the pathogenesis of Huntington’s disease. Neurobiol Dis. 2021;154: 105336.

    Article  CAS  PubMed  Google Scholar 

  50. Milutinović A, Zorc-Pleskovič R. Glycogen accumulation in cardiomyocytes and cardiotoxic effects after 3npa treatment. Bosn J Basic Med Sci. 2012;12(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wu A-G, Yong Y-Y, Pan Y-R, Zhang L, Wu J-M, Zhang Y, et al. Targeting Nrf2-mediated oxidative stress response in traumatic brain injury: therapeutic perspectives of phytochemicals. Oxid Med Cell Longev. 2022;2:2.

    Google Scholar 

  52. Choi JW, Kim S, Yoo JS, Kim HJ, Kim HJ, Kim BE, et al. Development and optimization of halogenated vinyl sulfones as Nrf2 activators for the treatment of Parkinson’s disease. Eur J Med Chem. 2021;212: 113103.

    Article  CAS  PubMed  Google Scholar 

  53. Scuderi SA, Ardizzone A, Paterniti I, Esposito E, Campolo M. Antioxidant and anti-inflammatory effect of Nrf2 inducer dimethyl fumarate in neurodegenerative diseases. Antioxidants. 2020;9(7):630.

    Article  CAS  PubMed Central  Google Scholar 

  54. Ayuso P, Martínez C, Pastor P, Lorenzo-Betancor O, Luengo A, Jiménez-Jiménez FJ, et al. An association study between heme oxygenase-1 genetic variants and Parkinson’s disease. Front Cell Neurosci. 2014;8:298.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nitti M, Piras S, Brondolo L, Marinari UM, Pronzato MA, Furfaro AL. Heme oxygenase 1 in the nervous system: does it favor neuronal cell survival or induce neurodegeneration? Int J Mol Sci. 2018;19(8):2260.

    Article  PubMed Central  CAS  Google Scholar 

  56. Kumar H, Koppula S, Kim I-S, Vasant More S, Kim B-W, Choi D-K. Nuclear Factor erythroid 2-related factor 2 signaling in parkinson disease: a promising multi therapeutic target against oxidative stress, neuroinflammation and cell death. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2012; 11(8): 1015–1029.

  57. Alonso-Navarro H, Jiménez-Jiménez F, Pilo de la Fuente B, and Plaza-Nieto J. Mecanismos Patogénicos De La Enfermedad De Parkinson. Tratado de los Trastornos del Movimiento. 2nd edition (ISBN 978–84–85424–76–4). 2008: 425–485.

  58. Hochstrasser H, Bauer P, Walter U, Behnke S, Spiegel J, Csoti I, et al. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in parkinson disease. Neurology. 2004;63(10):1912–7.

    Article  CAS  PubMed  Google Scholar 

  59. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds G, Hebenstreit G, et al. Increased iron (Iii) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm. 1988;74(3):199–205.

    Article  CAS  PubMed  Google Scholar 

  60. Urrutia P, Bórquez D, Núñez M. Inflaming the brain with iron. Antioxidants. 2021;10:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weinreb O, Mandel S, Youdim MB, Amit T. Targeting dysregulation of brain iron homeostasis in parkinson’s disease by iron chelators. Free Radical Biol Med. 2013;62:52–64.

    Article  CAS  Google Scholar 

  62. Vašková J, Vaško L, Kron I. Oxidative processes and antioxidative metaloenzymes. Antioxid Enzyme. 2012;2:19–58.

    Google Scholar 

  63. Garza-Lombó C, Franco R. The environmental contribution to redox dyshomeostasis in parkinson’s disease, in parkinsonism and the environment. Berlin: Springer; 2022. p. 69–102.

    Google Scholar 

  64. Ito H, Kurokawa H, Matsui H. Mitochondrial reactive oxygen species and heme, non-heme iron metabolism. Arch Biochem Biophys. 2021;700: 108695.

    Article  CAS  PubMed  Google Scholar 

  65. He Q, Song N, Jia F, Xu H, Yu X, **e J, et al. Role of Α-synuclein aggregation and the nuclear factor E2-related factor 2/Heme oxygenase-1 pathway in iron-induced neurotoxicity. Int J Biochem Cell Biol. 2013;45(6):1019–30.

    Article  CAS  PubMed  Google Scholar 

  66. Delaidelli A, Richner M, Jiang L, van der Laan A, Bergholdt Jul Christiansen I, Ferreira N, et al. Α-synuclein pathology in parkinson disease activates homeostatic Nrf2 anti-oxidant response. Acta Neuropathol Commun. 2021;9(1):1–16.

    Article  CAS  Google Scholar 

  67. Tong H, Zhang X, Meng X, Lu L, Mai D, Qu S. Simvastatin inhibits activation of Nadph oxidase/P38 Mapk pathway and enhances expression of antioxidant protein in parkinson disease models. Front Mol Neurosci. 2018;11:165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Masaki Y, Izumi Y, Matsumura A, Akaike A, Kume T. Protective effect of Nrf2–are activator isolated from green perilla leaves on dopaminergic neuronal loss in a parkinson’s disease model. Eur J Pharmacol. 2017;798:26–34.

    Article  CAS  PubMed  Google Scholar 

  69. He J, Zhu G, Wang G, Zhang F. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration. Oxid Med Cell Longev. 2020;2:2.

    Google Scholar 

  70. Min K-J, Yang M-s, Kim S-U, Jou I, Joe E-H. Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J Neurosci. 2006;26(6):1880–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rojo AI, Innamorato NG, Martín-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia. 2010;58(5):588–98.

    Article  PubMed  Google Scholar 

  72. Izumi Y, Kataoka H, Inose Y, Akaike A, Koyama Y, Kume T. Neuroprotective effect of an Nrf2-are activator identified from a chemical library on dopaminergic neurons. Eur J Pharmacol. 2018;818:470–9.

    Article  CAS  PubMed  Google Scholar 

  73. Upadhayay S, Mehan S. Targeting Nrf2/Ho-1 anti-oxidant signaling pathway in the progression of multiple sclerosis and influences on neurological dysfunctions. Brain Disord. 2021;3: 100019.

    Article  CAS  Google Scholar 

  74. Zheng J, Winderickx J, Franssens V, Liu B. A mitochondria-associated oxidative stress perspective on Huntington’s disease. Front Mol Neurosci. 2018;11:329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015;5(2):472–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang J-L, Weissman L, Bohr VA, Mattson MP. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair. 2008;7(7):1110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Siddiqui A, Rivera-Sánchez S, Castro MdR, Acevedo-Torres K, Rane A, Torres-Ramos CA, et al. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radical Biol Med. 2012;53(7):1478–88.

    Article  CAS  Google Scholar 

  78. Gao Y, Chu S-F, Li J-P, Zhang Z, Yan J-Q, Wen Z-L, et al. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of huntington’s disease. Acta Pharmacol Sin. 2015;36(3):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Calkins MJ, Jakel RJ, Johnson DA, Chan K, Kan YW, Johnson JA. Protection from mitochondrial complex ii inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci. 2005;102(1):244–9.

    Article  CAS  PubMed  Google Scholar 

  80. Linseman DA. Targeting oxidative stress for neuroprotection. Antioxid Redox Signal. 2009;11(3):421–4.

    Article  CAS  PubMed  Google Scholar 

  81. Gopinath K, Sudhandiran G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience. 2012;227:134–43.

    Article  CAS  PubMed  Google Scholar 

  82. Gonchar OO, Maznychenko AV, Klyuchko OM, Mankovska IM, Butowska K, Borowik A, et al. C60 fullerene reduces 3-nitropropionic acid-induced oxidative stress disorders and mitochondrial dysfunction in rats by modulation of P53, Bcl-2 and Nrf2 targeted proteins. Int J Mol Sci. 2021;22(11):5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nguyen T, Yang CS, Pickett CB. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radical Biol Med. 2004;37(4):433–41.

    Article  CAS  Google Scholar 

  84. Ikram M, Ullah R, Khan A, Kim MO. Ongoing research on the role of gintonin in the management of neurodegenerative disorders. Cells. 2020;9(6):1464.

    Article  CAS  PubMed Central  Google Scholar 

  85. Liu N, Bai L, Lu Z, Gu R, Zhao D, Yan F, et al. Trpv4 contributes to Er stress and inflammation: implications for Parkinson’s disease. J Neuroinflammation. 2022;19(1):1–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24(4):325.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pajares M, Cuadrado A, Rojo AI. Modulation of proteostasis by transcription factor Nrf2 and impact in neurodegenerative diseases. Redox Biol. 2017;11:543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cores Á, Piquero M, Villacampa M, León R, Menéndez JC. Nrf2 regulation processes as a source of potential drug targets against neurodegenerative diseases. Biomolecules. 2020;10(6):904.

    Article  CAS  PubMed Central  Google Scholar 

  89. Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radical Biol Med. 2015;88:101–7.

    Article  CAS  Google Scholar 

  90. Rojo AI, Sagarra MR, Cuadrado A. Gsk-3β down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem. 2008;105(1):192–202.

    Article  CAS  PubMed  Google Scholar 

  91. Su J, Zhang J, Bao R, **a C, Zhang Y, Zhu Z, et al. Mitochondrial dysfunction and apoptosis are attenuated through activation of Ampk/Gsk-3β/Pp2a pathway in Parkinson’s disease. Eur J Pharmacol. 2021;907: 174202.

    Article  CAS  PubMed  Google Scholar 

  92. Chen X, Liu Y, Zhu J, Lei S, Dong Y, Li L, et al. Gsk-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion. Sci Rep. 2016;6(1):1–16.

    CAS  Google Scholar 

  93. Han R, Yu Y, Zhao K, Wei J, Hui Y, Gao J-M. Lignans from eucommia ulmoides oliver leaves exhibit neuroprotective effects via activation of the Pi3k/Akt/Gsk-3β/Nrf2 signalling pathways in H2o2-treated Pc-12 cells. Phytomedicine. 2022;2:154124.

    Article  CAS  Google Scholar 

  94. Mittal SP, Khole S, Jagadish N, Ghosh D, Gadgil V, Sinkar V, et al. Andrographolide protects liver cells from H2o2 induced cell death by upregulation of Nrf-2/Ho-1 mediated via adenosine A2a receptor signalling. Biochim Biophys Acta General Subj. 2016;1860(11):2377–90.

    Article  CAS  Google Scholar 

  95. Habtemariam S. The Nrf2/Ho-1 axis as targets for flavanones: neuroprotection by pinocembrin, naringenin, and eriodictyol. Oxid Med Cell Longev. 2019;2:2.

    Google Scholar 

  96. Armagan G, Sevgili E, Gürkan FT, Köse FA, Bilgiç T, Dagcı T, et al. Regulation of the Nrf2 pathway by glycogen synthase kinase-3β in Mpp+-induced cell damage. Molecules. 2019;24(7):1377.

    Article  PubMed Central  CAS  Google Scholar 

  97. Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A. Glycogen synthase kinase-3β inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem. 2006;281(21):14841–51.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang X-L, Yuan Y-H, Shao Q-H, Wang Z-Z, Zhu C-G, Shi J-G, et al. Dj-1 regulating Pi3k-Nrf2 signaling plays a significant role in bibenzyl compound 20c-mediated neuroprotection against rotenone-induced oxidative insult. Toxicol Lett. 2017;271:74–83.

    Article  CAS  PubMed  Google Scholar 

  99. Khan A, Jamwal S, Bijjem K, Prakash A, Kumar P. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience. 2015;287:66–77.

    Article  CAS  PubMed  Google Scholar 

  100. Infante J, García-Gorostiaga I, Sánchez-Juan P, Sierra M, Martín-Gurpegui J, Terrazas J, et al. Synergistic effect of two oxidative stress-related genes (heme oxygenase-1 and Gsk3β) on the risk of parkinson’s disease. Eur J Neurol. 2010;17(5):760–2.

    Article  CAS  PubMed  Google Scholar 

  101. Arab HH, Safar MM, Shahin NN. Targeting ros-dependent Akt/Gsk-3β/Nf-Κb and Dj-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced parkinson’s disease rat model. ACS Chem Neurosci. 2021;12(4):689–703.

    Article  CAS  PubMed  Google Scholar 

  102. Huang Y, Sun L, Zhu S, Xu L, Liu S, Yuan C, et al. Neuroprotection against Parkinson’s disease through the activation of Akt/Gsk3β signaling pathway by tovophyllin A. Front Neurosci. 2020;14:723.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wu C-R, Chang H-C, Cheng Y-D, Lan W-C, Yang S-E, Ching H. Aqueous extract of davallia mariesii attenuates 6-hydroxydopamine-induced oxidative damage and apoptosis in B35 cells through inhibition of caspase cascade and activation of Pi3k/Akt/Gsk-3β pathway. Nutrients. 2018;10(10):1449.

    Article  PubMed Central  CAS  Google Scholar 

  104. Nataraj J, Manivasagam T, Justin Thenmozhi A, Essa MM. Neurotrophic effect of asiatic acid, a triterpene of centella asiatica against chronic 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride/probenecid mouse model of Parkinson’s disease: the role of Mapk, Pi3k-Akt-Gsk3β and Mtor signalling pathways. Neurochem Res. 2017;42(5):1354–65.

    Article  CAS  PubMed  Google Scholar 

  105. Wang H-M, Zhang T, Li Q, Huang J-K, Chen R-F, Sun X-J. Inhibition of glycogen synthase kinase-3β by lithium chloride suppresses 6-hydroxydopamine-induced inflammatory response in primary cultured astrocytes. Neurochem Int. 2013;63(5):345–53.

    Article  CAS  PubMed  Google Scholar 

  106. Duka T, Duka V, Joyce JN, Sidhu A. Α-synuclein contributes to Gsk-3β-catalyzed tau phosphorylation in Parkinson’s disease models. FASEB J. 2009;23(9):2820–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Inose Y, Izumi Y, Takada-Takatori Y, Akaike A, Koyama Y, Kaneko S, et al. Protective effects of Nrf2–are activator on dopaminergic neuronal loss in parkinson disease model mice: possible involvement of heme oxygenase-1. Neurosci Lett. 2020;736: 135268.

    Article  CAS  PubMed  Google Scholar 

  108. Darabi S, Noori-Zadeh A, Abbaszadeh H-A, Rajaei F, Bakhtiyari S. Trehalose neuroprotective effects on the substantia nigra dopaminergic cells by activating autophagy and non-canonical Nrf2 pathways. Iran J Pharmac Res IJPR. 2019;18(3):1419.

    CAS  Google Scholar 

  109. Moreira S, Fonseca I, Nunes MJ, Rosa A, Lemos L, Rodrigues E, et al. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol. 2017;295:77–87.

    Article  CAS  PubMed  Google Scholar 

  110. Michel HE, Tadros MG, Esmat A, Khalifa AE, Abdel-Tawab AM. Tetramethylpyrazine ameliorates rotenone-induced parkinson’s disease in rats: involvement of its anti-inflammatory and anti-apoptotic actions. Mol Neurobiol. 2017;54(7):4866–78.

    Article  CAS  PubMed  Google Scholar 

  111. Cui Q, Li X, Zhu H. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep. 2016;13(2):1381–8.

    Article  CAS  PubMed  Google Scholar 

  112. Innamorato NG, Jazwa A, Rojo AI, García C, Fernández-Ruiz J, Grochot-Przeczek A, et al. Different susceptibility to the Parkinson’s toxin mptp in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1. PLoS ONE. 2010;5(7): e11838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Salinas M, Diaz R, Abraham NG, de Galarreta CMR, Cuadrado A. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem. 2003;278(16):13898–904.

    Article  CAS  PubMed  Google Scholar 

  114. Silva-Palacios A, Ostolga-Chavarría M, Buelna-Chontal M, Garibay C, Hernández-Reséndiz S, Roldán F, et al. 3-Np-induced Huntington’s-like disease impairs Nrf2 activation without loss of cardiac function in aged rats. Exp Gerontol. 2017;96:89–98.

    Article  CAS  PubMed  Google Scholar 

  115. Liu P, Li Y, Yang W, Liu D, Ji X, Chi T, et al. Prevention of Huntington’s disease-like behavioral deficits in R6/1 mouse by tolfenamic acid is associated with decreases in mutant huntingtin and oxidative stress. Oxid Med Cell Longev. 2019;2:2.

    Google Scholar 

  116. Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, et al. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem. 2005;280(24):22925–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to sincerely acknowledge Department of Science & Technology (DST), New Delhi for providing INSPIRE fellowship to Divya Soni.

Funding

This review did not receive any specific grant from funding agencies,

Author information

Authors and Affiliations

Authors

Contributions

DS: data acquisition, concept design, and drafting manuscript. PK: concept design, supervision, edit and final approval of manuscript.

Corresponding author

Correspondence to Puneet Kumar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, D., Kumar, P. GSK-3β-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders. Pharmacol. Rep 74, 557–569 (2022). https://doi.org/10.1007/s43440-022-00390-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00390-z

Keywords

Navigation