Log in

The impact of the histone deacetylase inhibitor sodium butyrate on microglial polarization after oxygen and glucose deprivation

  • Special Issue: Article
  • Energy metabolism in the physiology and pathology of the central nervous system
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Microglia play a major role in the development of brain inflammation after central nervous system injury. On the other hand, microglia also participate in the repair process. The dualistic role of these cells results from the fact that various states of their activation are associated with specific phenotypes. The M1 phenotype is responsible for the production of proinflammatory mediators, whereas the M2 microglia release anti-inflammatory and trophic factors and take part in immunosuppressive and neuroprotective processes. The histone deacetylase inhibitor sodium butyrate (SB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury. The aim of this study was to examine the effects of sodium butyrate on the proliferation and M1/M2 polarization of primary microglial cells after oxygen and glucose deprivation (OGD) in vitro.

Methods

Primary microglial cultures were prepared from 1-day-old rats, subjected to the OGD procedure and treated with SB (0.1 mM, 1 mM and 10 mM). The effect of OGD and SB on microglial proliferation was assessed by double immunofluorescence, and microglial phenotypes were evaluated by qPCR.

Results

The OGD procedure stimulated the proliferation of microglia after 24 h of culturing, and SB treatment reduced the division of these cells. This effect was inversely proportional to the SB concentration. The OGD procedure increased proinflammatory CD86 and IL1β gene expression and reduced the expression of the anti-inflammatory M2 markers arginase and CD200 in microglia.

Conclusions

SB can change the polarization of microglia after OGD from an unfavourable M1 to a beneficial M2 phenotype. Our results show that SB is a potential immunosuppressive agent that can modulate microglial activation stimulated by ischaemic-like conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CNS:

Central nervous system

DIV:

Day(s) in vitro

GDNF:

Glial cell line-derived neurotrophic factor

HATs:

Histone acetyl-transferases

HDACs:

Histone deacetylases

HDACis:

Histone deacetylase inhibitors

HI:

Hypoxia–ischaemia

IGF:

Insulin growth factor

IL-10:

Interleukin 10

IL-1β:

Interleukin 1β

LPS:

Lipopolysaccharide

MMPs:

Matrix metalloproteinases

NO:

Nitric oxide,

NOS:

Nitric oxide synthase

OGD:

Oxygen and glucose deprivation

PBS:

Phosphate-buffered saline buffer

PFA:

Paraformaldehyde

PLL:

Poly-L-lysine

ROS:

Reactive oxygen species

SAHA:

Vorinostat

SB:

Sodium butyrate

TGF β:

Transforming growth factor β

TSA:

Trichostatin A

VPA:

Valproic acid

References

  1. Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res. 1999;117:145–52. https://doi.org/10.1016/s0165-3806(99)00113-3.

    Article  CAS  PubMed  Google Scholar 

  2. Winerdal M, Winerdal ME, Kinn J, Urmaliya V, Winqvist O, Adén U. Long lasting local and systemic inflammation after cerebral hypoxic ischemia in newborn mice. PLoS ONE. 2012;7: e36422. https://doi.org/10.1371/journal.pone.0036422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Algra SO, Groeneveld KM, Schadenberg AW, Haas F, Evens FC, Meerding J, et al. Cerebral ischemia initiates an immediate innate immune response in neonates during cardiac surgery. J Neuroinflamm. 2013;10:796. https://doi.org/10.1186/1742-2094-10-24.

    Article  CAS  Google Scholar 

  4. Bona E, Andersson A-L, Blomgren K, Gilland E, Puka-Sundvall M, Gustafson K, et al. Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res. 1999;45:500–9. https://doi.org/10.1203/00006450-199904010-00008.

    Article  CAS  PubMed  Google Scholar 

  5. ** Y, Silverman AJ, Vannucci SJ. Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke. 2009;40:3107–12. https://doi.org/10.1161/STROKEAHA.109.549691.

    Article  CAS  PubMed  Google Scholar 

  6. Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol. 2012;71:444–57. https://doi.org/10.1002/ana.22620.

    Article  PubMed  Google Scholar 

  7. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol. 2015;11:192–208. https://doi.org/10.1038/nrneurol.2015.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF, et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci. 2011;31:12992–3001. https://doi.org/10.1523/JNEUROSCI.2102-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43:3063–70. https://doi.org/10.1161/STROKEAHA.112.659656.

    Article  CAS  PubMed  Google Scholar 

  10. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol. 2015;11:56–64. https://doi.org/10.1038/nrneurol.2014.207.

    Article  PubMed  Google Scholar 

  11. Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci. 2007;27:2596–605. https://doi.org/10.1523/JNEUROSCI.5360-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Capone C, Frigerio S, Fumagalli S, Gelati M, Principato M-C, Storini C, et al. Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS ONE. 2007;2: e373. https://doi.org/10.1371/journal.pone.0000373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol. 2009;4:399–418. https://doi.org/10.1007/s11481-009-9164-4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lehrmann H, Pritchard LL, Harel-Bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res. 2002;86:41–65. https://doi.org/10.1016/S0065-230X(02)86002-X.

    Article  CAS  PubMed  Google Scholar 

  15. Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, et al. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev. 2005;25:261–309. https://doi.org/10.1002/med.20024.

    Article  CAS  PubMed  Google Scholar 

  16. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23. https://doi.org/10.1016/j.gene.2005.09.010.

    Article  CAS  PubMed  Google Scholar 

  17. Kim HJ, Rowe M, Ren M, Hong J-S, Chen P-S, Chuang D-M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther. 2007;321:892–901. https://doi.org/10.1124/jpet.107.120188.

    Article  CAS  PubMed  Google Scholar 

  18. Jaworska J, Ziemka-Nalecz M, Sypecka J, Zalewska T. The potential neuroprotective role of a histone deacetylase inhibitor, sodium butyrate, after neonatal hypoxia-ischemia. J Neuroinflamm. 2017;14:34. https://doi.org/10.1186/s12974-017-0807-8.

    Article  CAS  Google Scholar 

  19. Jaworska J, Zalewska T, Sypecka J, Ziemka-Nalecz M. Effect of the HDAC inhibitor, sodium butyrate, on neurogenesis in a rat model of neonatal hypoxia-ischemia: potential mechanism of action. Mol Neurobiol. 2019;56:6341–70. https://doi.org/10.1007/s12035-019-1518-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu F, Mccullough LD. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin. 2013;34:1121–30. https://doi.org/10.1038/aps.2013.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70:374–83. https://doi.org/10.1002/ana.22455.

    Article  PubMed  Google Scholar 

  22. Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S. Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain. 2013;136:3578–88. https://doi.org/10.1093/brain/awt287.

    Article  PubMed  Google Scholar 

  23. Li H, Zhang Q, Li N, Wang F, **ang H, Zhang Z, et al. Plasma levels of Th17-related cytokines and complement C3 correlated with aggressive behavior in patients with schizophrenia. Psychiatry Res. 2016;246:700–6. https://doi.org/10.1016/j.psychres.2016.10.061.

    Article  CAS  PubMed  Google Scholar 

  24. Huang Y, Xu Z, **ong S, Sun F, Qin G, Hu G, et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci. 2018;21:530–40. https://doi.org/10.1038/s41593-018-0090-8.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang G, Li T, Chang X, **ng J. Long noncoding RNA SNHG14 promotes ischemic brain injury via regulating miR-199b/AQP4 Axis. Neurochem Res. 2021;46:1280–90. https://doi.org/10.1007/s11064-021-03265-6.

    Article  CAS  PubMed  Google Scholar 

  26. Yao Z, Liu N, Zhu X, Wang L, Zhao Y, Liu Q, et al. Subanesthetic isoflurane abates ROS-activated MAPK/NF-κB signaling to repress ischemia-induced microglia inflammation and brain injury. Aging (Albany NY). 2020;12:26121–39. https://doi.org/10.18632/aging.202349.

    Article  CAS  Google Scholar 

  27. Liu J, Ma W, Zang C-H, Wang G-D, Zhang S-J, Wu H-J, et al. Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway. Ann Transl Med. 2021;9:1694–1694. https://doi.org/10.21037/atm-21-5752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Q, Chen C, Lü J, **e M, Pan D, Luo X, et al. Cell cycle inhibition attenuates microglial proliferation and production of IL-1β, MIP-1α, and NO after focal cerebral ischemia in the rat. Glia. 2009;57:908–20. https://doi.org/10.1002/glia.20816.

    Article  PubMed  Google Scholar 

  29. Chen PS, Wang C-C, Bortner CD, Peng G-S, Wu X, Pang H, et al. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience. 2007;149:203–12. https://doi.org/10.1016/j.neuroscience.2007.06.053.

    Article  CAS  PubMed  Google Scholar 

  30. He X-B, Wu Y, Huang H, Guo F. A novel histone deacetylase inhibitor-based approach to eliminate microglia and retain astrocyte properties in glial cell culture. J Neurochem. 2022;161:405–16. https://doi.org/10.1111/jnc.15581.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Zhao W. Resveratrol alleviates ischemic brain injury by inhibiting the activation of pro-inflammatory microglia via the CD147/MMP-9 pathway. J Stroke Cerebrovasc Dis. 2022;31: 106307. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106307.

    Article  PubMed  Google Scholar 

  32. Kim HJ, Leeds P, Chuang D-M. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem. 2009;110:1226–40. https://doi.org/10.1111/j.1471-4159.2009.06212.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsing C-H, Hung S-K, Chen Y-C, Wei T-S, Sun D-P, Wang J-J, et al. Histone deacetylase inhibitor trichostatin A ameliorated endotoxin-induced neuroinflammation and cognitive dysfunction. Mediat Inflamm. 2015;2015: 163140. https://doi.org/10.1155/2015/163140.

    Article  CAS  Google Scholar 

  34. Durham BS, Grigg R, Wood IC. Inhibition of histone deacetylase 1 or 2 reduces induced cytokine expression in microglia through a protein synthesis independent mechanism. J Neurochem. 2017;143:214–24. https://doi.org/10.1111/jnc.14144.

    Article  CAS  PubMed  Google Scholar 

  35. Jiao F-Z, Wang Y, Zhang H-Y, Zhang W, Wang L-W, Gong Z-J. Histone deacetylase 2 Inhibitor CAY10683 alleviates lipopolysaccharide induced neuroinflammation through attenuating TLR4/NF-κB signaling pathway. Neurochem Res. 2018;43:1161–70. https://doi.org/10.1007/s11064-018-2532-9.

    Article  CAS  PubMed  Google Scholar 

  36. Mota M, Porrini V, Parrella E, Benarese M, Bellucci A, Rhein S, et al. Neuroprotective epi-drugs quench the inflammatory response and microglial/macrophage activation in a mouse model of permanent brain ischemia. J Neuroinflamm. 2020;17:361. https://doi.org/10.1186/s12974-020-02028-4.

    Article  CAS  Google Scholar 

  37. Meng Q, Yang G, Yang Y, Ding F, Hu F. Protective effects of histone deacetylase inhibition by Scriptaid on brain injury in neonatal rat models of cerebral ischemia and hypoxia. Int J Clin Exp Pathol. 2020;13:179–91.

    PubMed  PubMed Central  Google Scholar 

  38. Chen S, Ye J, Chen X, Shi J, Wu W, Lin W, et al. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J Neuroinflamm. 2018;15:150. https://doi.org/10.1186/s12974-018-1193-6.

    Article  CAS  Google Scholar 

  39. Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci USA. 2015;112:2853–8. https://doi.org/10.1073/pnas.1501441112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The confocal analysis of immunocytochemical staining was performed in the Laboratory of Advanced Microscopy Techniques, Mossakowski Medical Research Institute, Polish Academy of Sciences.

Funding

This work was supported by National Science Centre, Poland grant no 2017/27/B/NZ3/00582. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KZ performed and analysed the data, prepared figures, and contributed to writing the manuscript, JG performed some in vitro experiments, JS contributed to writing the manuscript, MZ-N designed experiments, analysed and interpreted the data, and was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Malgorzata Ziemka-Nalecz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziabska, K., Gargas, J., Sypecka, J. et al. The impact of the histone deacetylase inhibitor sodium butyrate on microglial polarization after oxygen and glucose deprivation. Pharmacol. Rep 74, 909–919 (2022). https://doi.org/10.1007/s43440-022-00384-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00384-x

Keywords

Navigation