Log in

Ketamine treatment protects against oxidative damage and the immunological response induced by electroconvulsive therapy

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Electroconvulsive therapy (ECT) is often recommended for major depressive disorder (MDD) for those who do not respond to the first and second antidepressant trials. A combination of two therapies could improve antidepressant efficacy. Thus, this study aimed to investigate the synergistic effects of ECT combined to antidepressants with a different mechanism of action.

Methods

Rats were treated once a day, for five days with ketamine (5 mg/kg), fluoxetine (1 mg/kg), and bupropion (4 mg/kg) alone or in combination with ECT (1 mA; 100 V). After, oxidative damage and antioxidant capacity were assessed in the prefrontal cortex (PFC) and hippocampus, and pro-inflammatory cytokines levels were evaluated in the serum.

Results

ECT alone increased lipid peroxidation in the PFC and hippocampus. In the PFC of rats treated with ECT in combination with fluoxetine and bupropion, and in the hippocampus of rats treated with ECT combined with ketamine and bupropion there was a reduction in the lipid peroxidation. The nitrite/nitrate was increased by ECT alone but reverted by combination with ketamine in the hippocampus. Superoxide dismutase (SOD) was increased by ECT and maintained by fluoxetine and bupropion in the PFC. ECT alone increased interleukin-1β (IL-1β) and the administration of ketamine was able to revert this increase showing a neuroprotective effect of this drug when in combination with ECT.

Conclusion

The treatment with ECT leads to an increase in oxidative damage and alters the immunological system. The combination with ketamine was able to protect against oxidative damage and the immunological response induced by ECT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization. Depression and other common mental disorders: global health estimates. 2017. p. 1–21.

  2. Adaikkan C, Taha E, Barrera I, David O, Rosenblum K. Calcium/calmodulin-dependent protein kinase II and eukaryotic elongation factor 2 kinase pathways mediate the antidepressant action of ketamine. Biol Psychiatry. 2018;84(1):65–75.

    CAS  PubMed  Google Scholar 

  3. Sartorius N. The economic and social burden of depression. J Clin Psychiatry. 2001;62(Suppl 15):8–11.

    PubMed  Google Scholar 

  4. Carvalho AF, Berk M, Hyphantis TN, McIntyre RS. The integrative management of treatment-resistant depression: a comprehensive review and perspectives. Psychother Psychosom. 2014;83(2):70–88.

    PubMed  Google Scholar 

  5. Depression in adults: recognition and management. National Institute for Health and Care Excellence (UK); 2014.

  6. Raval NK, Andrade C. Unmodified ECT vs modified ECT. Issues Med Ethics. 2003;11(3):100 (author reply 101).

    PubMed  Google Scholar 

  7. Dierckx B, Heijnen WT, van den Broek WW, Birkenhäger TK. Efficacy of electroconvulsive therapy in bipolar versus unipolar major depression: a meta-analysis. Bipolar Disord. 2012;14(2):146–50.

    PubMed  Google Scholar 

  8. Sackeim HA, Prudic J. Length of the ECT course in bipolar and unipolar depression. J ECT. 2005;21(3):195–7.

    PubMed  Google Scholar 

  9. Uchida T, Kishimoto T, Koreki A, Nakao S, Owada A, Koizumi T, et al. Predictors of readmission after successful electroconvulsive therapy for depression: a chart review study. Int J Psychiatry Clin Pract. 2016;20(4):260–4.

    PubMed  Google Scholar 

  10. Barichello T, Bonatto F, Agostinho FR, Reinke A, Moreira JC, Dal-Pizzol F, et al. Structure-related oxidative damage in rat brain after acute and chronic electroshock. Neurochem Res. 2004;29(9):1749–17453.

    CAS  PubMed  Google Scholar 

  11. Barichello T, Bonatto F, Feier G, Martins MR, Moreira JC, Dal-Pizzol F, et al. No evidence for oxidative damage in the hippocampus after acute and chronic electroshock in rats. Brain Res. 2004;1014(1–2):177–83.

    CAS  PubMed  Google Scholar 

  12. Feier G, Ornada LK, Barichello T, Vitali AM, Bonatto F, Moreira JC, et al. Long lasting effects of electroconvulsive seizures on brain oxidative parameters. Neurochem Res. 2006;31(5):665–70.

    CAS  PubMed  Google Scholar 

  13. Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A. Electroconvulsive therapy, depression, the immune system and inflammation: a systematic review. Brain Stimul. 2018;11(1):29–51.

    PubMed  Google Scholar 

  14. Maes M, Galecki P, Chang YS, Berk M. A A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–92.

    CAS  PubMed  Google Scholar 

  15. Reus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141–54.

    CAS  PubMed  Google Scholar 

  16. Reus GZ, Silva RH, de Moura AB, Presa JF, Abelaira HM, Abatti M, et al. Early maternal deprivation induces microglial activation, alters glial fibrillary acidic protein immunoreactivity and indoleamine 2,3-dioxygenase during the development of offspring rats. Mol Neurobiol. 2019;56(2):1096–108.

    CAS  PubMed  Google Scholar 

  17. Maes M. Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry. 1995;19(1):11–38.

    CAS  PubMed  Google Scholar 

  18. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23(2):335–43.

    CAS  PubMed  Google Scholar 

  19. Yang C, Wardenaar KJ, Bosker FJ, Li J, Schoevers RA. Inflammatory markers and treatment outcome in treatment resistant depression: a systematic review. J Affect Disord. 2019;257:640–9.

    CAS  PubMed  Google Scholar 

  20. Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(1):140–4.

    CAS  PubMed  Google Scholar 

  21. Reneric JP, Lucki I. Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test. Psychopharmacology. 1998;136(2):190–7.

    CAS  PubMed  Google Scholar 

  22. Tsutsumi T, Fujiki M, Akiyoshi J, Horinouchi Y, Isogawa K, Hori S, et al. Effect of repetitive transcranial magnetic stimulation on forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(1):107–11.

    PubMed  Google Scholar 

  23. Paxinos G, Watson CR, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods. 1980;3(2):129–49. https://doi.org/10.1016/0165-0270(80)90021-7.

    Article  CAS  PubMed  Google Scholar 

  24. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–21.

    CAS  PubMed  Google Scholar 

  25. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982;126(1):131–8.

    CAS  PubMed  Google Scholar 

  26. Bannister JV, Calabrese L. Assays for superoxide dismutase. Methods Biochem Anal. 1987;32:279–312.

    CAS  PubMed  Google Scholar 

  27. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    CAS  Google Scholar 

  28. Sengul MC, Kenar AN, Hanci E, Sendur İ, Sengul C, Herken H. Practice of acute and maintenance electroconvulsive therapy in the psychiatric clinic of a University Hospital from Turkey: between 2007 and 2013. Clin Psychopharmacol Neurosci. 2016;14(1):57–63.

    PubMed  PubMed Central  Google Scholar 

  29. APA. APA, Committee on ECT: the practice of electroconvulsive therapy. Recommendations for treatment, training, and privileging. A Task Force Report of the American Psychiatric Association, Washington, 2001.

  30. Takala CR, Leung JG, Murphy LL, Geske JR, Palmer BA. Concurrent electroconvulsive therapy and bupropion treatment. J ECT. 2017;33(3):185–9.

    CAS  PubMed  Google Scholar 

  31. Haskett RF, Loo L. Adjunctive psychotropic medications during electroconvulsive therapy in the treatment of depression, mania, and schizophrenia. J ECT. 2010;26(3):196–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BW. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology. 2015;51:164–75.

    CAS  PubMed  Google Scholar 

  33. Lopresti AL, Maker GL, Hood SD, Drummond PD. A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:102–11.

    PubMed  Google Scholar 

  34. Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord. 2001;64(1):43–51.

    CAS  PubMed  Google Scholar 

  35. Galecki P, Szemraj J, Bieńkiewicz M, Florkowski A, Gałecka E. Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. Pharmacol Rep. 2009;61(3):436–47.

    CAS  PubMed  Google Scholar 

  36. Dal-Pizzol F, Klamt F, Vianna MM, Schröder N, Quevedo J, Benfato MS, et al. Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett. 2000;291(3):179–82.

    CAS  PubMed  Google Scholar 

  37. Yoosefi A, Sepehri AS, Kargar M, Akhondzadeh S, Sadeghi M, Rafei A, et al. Comparing effects of ketamine and thiopental administration during electroconvulsive therapy in patients with major depressive disorder: a randomized, double-blind study. J ECT. 2014;30(1):15–21.

    CAS  PubMed  Google Scholar 

  38. Zhong X, He H, Zhang C, Wang Z, Jiang M, Li Q, et al. Mood and neuropsychological effects of different doses of ketamine in electroconvulsive therapy for treatment-resistant depression. J Affect Disord. 2016;201:124–30.

    CAS  PubMed  Google Scholar 

  39. Ren L, Deng J, Min S, Peng L, Chen Q. Ketamine in electroconvulsive therapy for depressive disorder: a systematic review and meta-analysis. J Psychiatr Res. 2018;104:144–56.

    PubMed  Google Scholar 

  40. Reus GZ, Carlessi AS, Titus SE, Abelaira HM, Ignácio ZM, da Luz JR, Matias BI, et al. A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Dev Neurobiol. 2015;75(11):1268–81.

    CAS  PubMed  Google Scholar 

  41. Kos EA, Bakar B, Ayva SK, Kilinc K, Apan A. Neuroprotective effects of racemic ketamine and (S)-ketamine on spinal cord injury in rat. Injury. 2012;43(7):1124–30.

    Google Scholar 

  42. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang M, Rosenheck R, Lin X, Li Q, Zhou Y, **ao Y, et al. A randomized clinical trial of adjunctive ketamine anesthesia in electro-convulsive therapy for depression. J Affect Disord. 2018;227:372–8.

    CAS  PubMed  Google Scholar 

  44. Maes M, Mihaylova I, Kubera M, Leunis JC. An IgM-mediated immune response directed against nitro-bovine serum albumin (nitro-BSA) in chronic fatigue syndrome (CFS) and major depression: evidence that nitrosative stress is another factor underpinning the comorbidity between major depression and CFS. Neuro Endocrinol Lett. 2008;29(3):313–9.

    PubMed  Google Scholar 

  45. Chung KK, Dawson TM, Dawson VL. Nitric oxide, S-nitrosylation and neurodegeneration. Cell Mol Biol (Noisy-le-grand). 2005;51(3):247–54.

    CAS  Google Scholar 

  46. Moncada S, Bolanos JP. Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem. 2006;97(6):1676–89.

    CAS  PubMed  Google Scholar 

  47. Maciel AL, Abelaira HM, de Moura AB, de Souza TG, Rosa T, Matos D, Tuon T, et al. Acute treatment with ketamine and chronic treatment with minocycline exert antidepressant-like effects and antioxidant properties in rats subjected different stressful events. Brain Res Bull. 2018;137:204–16.

    CAS  PubMed  Google Scholar 

  48. Camkurt MA, Fındıklı E, İzci F, Kurutaş EB, Tuman TC. Evaluation of malondialdehyde, superoxide dismutase and catalase activity and their diagnostic value in drug naive, first episode, non-smoker major depression patients and healthy controls. Psychiatry Res. 2016;238:81–5.

    CAS  PubMed  Google Scholar 

  49. Perry JJ, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta. 2010;1804(2):245–62.

    CAS  PubMed  Google Scholar 

  50. Beers RF Jr, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195(1):133–40.

    CAS  PubMed  Google Scholar 

  51. Nielsen B, Cejvanovic V, Wörtwein G, Hansen AR, Marstal KK, Weimann A, et al. Increased oxidation of RNA despite reduced mitochondrial respiration after chronic electroconvulsive stimulation of rat brain tissue. Neurosci Lett. 2019;690:1–5.

    CAS  PubMed  Google Scholar 

  52. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9(7):684–97 (643).

    CAS  PubMed  Google Scholar 

  53. Zupan G, Pilipović K, Hrelja A, Peternel S. Oxidative stress parameters in different rat brain structures after electroconvulsive shock-induced seizures. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(3):771–7.

    CAS  PubMed  Google Scholar 

  54. Andrade C. Ketamine for depression, 1: clinical summary of issues related to efficacy, adverse effects, and mechanism of action. J Clin Psychiatry. 2017;78(4):e415–9.

    PubMed  Google Scholar 

  55. Bufalino C, Hepgul N, Aguglia E, Pariante CM. The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun. 2013;31:31–47.

    CAS  PubMed  Google Scholar 

  56. Connor TJ, Starr N, O’Sullivan JB, Harkin A. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci Lett. 2008;441(1):29–34.

    CAS  PubMed  Google Scholar 

  57. Rosenquist PB, Miller B, Pillai A. The antipsychotic effects of ECT: a review of possible mechanisms. J ECT. 2014;30(2):125–31.

    CAS  PubMed  Google Scholar 

  58. Kronfol Z, Lemay L, Nair M, Kluger M. Electroconvulsive therapy increases plasma levels of interleukin-6. Ann NY Acad Sci. 1990;594(1):463–5.

    Google Scholar 

  59. Fluitman SB, Heijnen CJ, Denys DA, Nolen WA, Balk FJ, Westenberg HG. Electroconvulsive therapy has acute immunological and neuroendocrine effects in patients with major depressive disorder. J Affect Disord. 2011;131(1–3):388–92.

    CAS  PubMed  Google Scholar 

  60. Lehtimaki K, Keränen T, Huuhka M, Palmio J, Hurme M, Leinonen E, et al. Increase in plasma proinflammatory cytokines after electroconvulsive therapy in patients with depressive disorder. J ECT. 2008;24(1):88–91.

    PubMed  Google Scholar 

  61. Andrade C. Ketamine and electroconvulsive therapy for depression. J Neurosurg Anesthesiol. 2018;30(4):288–9.

    PubMed  Google Scholar 

  62. White PF, Way WL, Trevor AJ. Ketamine—its pharmacology and therapeutic uses. Anesthesiology. 1982;56(2):119–36.

    CAS  PubMed  Google Scholar 

  63. Li DJ, Wang FC, Chu CS, Chen TY, Tang CH, Yang WC, et al. Significant treatment effect of add-on ketamine anesthesia in electroconvulsive therapy in depressive patients: a meta-analysis. Eur Neuropsychopharmacol. 2017;27(1):29–41.

    CAS  PubMed  Google Scholar 

  64. Carspecken CW, Borisovskaya A, Lan ST, Heller K, Buchholz J, Ruskin D, et al. Ketamine anesthesia does not improve depression scores in electroconvulsive therapy: a randomized clinical trial. J Neurosurg Anesthesiol. 2018;30(4):305–13.

    PubMed  Google Scholar 

  65. Gamble JJ, Bi H, Bowen R, Weisgerber G, Sanjanwala R, Prasad R, et al. Ketamine-based anesthesia improves electroconvulsive therapy outcomes: a randomized-controlled study. Can J Anaesth. 2018;65(6):636–46.

    PubMed  Google Scholar 

  66. Cobb K, Nanda M. Ketamine and electroconvulsive therapy: so happy together? Curr Opin Anaesthesiol. 2018;31(4):459–62.

    CAS  PubMed  Google Scholar 

Download references

Funding

The Translational Psychiatry Program (USA) is funded by the Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth). Translational Psychiatry Laboratory (Brazil) is one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). Its research is supported by Grants from CNPq (JQ and GZR), FAPESC (JQ and GZR); Instituto Cérebro e Mente (JQ and GZR) and UNESC (JQ and GZR). JQ is a 1A CNPq Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design and interpretation of the studies, analyzed the data and review of the manuscript; HMA, TR, ABM, ZMI, and LAB applied the ECT protocol and drugs administration in the animals. MEMB and MPG conducted the oxidative stress analysis; LG, MEF, and FP carried the cytokines analyzes; CLG, DCV, JQ, and GZR wrote the manuscript.

Corresponding author

Correspondence to Gislaine Zilli Réus.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, C.L., Abelaira, H.M., Rosa, T. et al. Ketamine treatment protects against oxidative damage and the immunological response induced by electroconvulsive therapy. Pharmacol. Rep 73, 525–535 (2021). https://doi.org/10.1007/s43440-020-00200-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00200-4

Keywords

Navigation