Log in

Low-dose angiotensin AT1 receptor β-arrestin-biased ligand, TRV027, protects against cisplatin-induced nephrotoxicity

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Recruitment of β-arrestin to G protein-coupled receptors (GPCRs), initially described to cause receptor desensitization, has recently been shown to take active roles in cell signaling. We investigated the effects of TRV027, an angiotensin AT1 receptor β-arrestin-biased ligand, as well as losartan and valsartan on cisplatin-induced kidney injury.

Method

Male Sprague–Dawley rats were treated with angiotensin receptor ligands (1 or 10 mg/kg/day) with or without cisplatin, and kidney variables were monitored using animal SPECT, histopathology, and serum parameters.

Results

TRV027, losartan, and valsartan did not alter renal dimercaptosuccinic acid (DMSA) uptake, histopathological manifestations of kidney injury, blood urea nitrogen (BUN), and creatinine or Na+ and K+ levels, per se. However, when rats co-treated with cisplatin and either of the AT1 receptor blockers at higher doses, we observed aggravation of cisplatin-induced reduction of radiotracer uptake but improvement of cisplatin-induced hypokalemia, and insignificant effect on histological findings. Furthermore, we noted an additional increase in cisplatin-induced augmentation of BUN and creatinine levels in cisplatin plus valsartan group. TRV027 (1 mg/kg/day) inhibited cisplatin adverse effects on radiotracer uptake, kidney histology, BUN, and creatinine as well as electrolyte levels, but it failed to produce protective effects at higher dose (10 mg/kg/day).

Conclusion

Low-dose TRV027 may offer potential benefits in kidney injury due to cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol [Internet]. 2012;86(8):1233–50.

    Google Scholar 

  2. Yuwen D, Mi S, Ma Y, Guo W, Xu Q, Shen Y, Shu Y. Andrographolide enhances cisplatin-mediated anticancer effects in lung cancer cells through blockade of autophagy. Anticancer Drugs [Internet]. 2017;28(9):967–76.

    CAS  Google Scholar 

  3. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int [Internet]. 2008;73(9):994–1007.

    CAS  Google Scholar 

  4. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115–24.

    PubMed  Google Scholar 

  5. Wzgarda A, Kleszcz R, Prokop M, Regulska K, Regulski M, Paluszczak J, et al. Unknown face of known drugs - what else can we expect from angiotensin converting enzyme inhibitors? Eur J Pharmacol [Internet]. 2017;797:9–19.

    CAS  Google Scholar 

  6. Johnson SA, Spurney RF. Twenty years after ACEIs and ARBs: emerging treatment strategies for diabetic nephropathy. Am J Physiol Ren Physiol [Internet]. 2015;309(10):F807–20.

    CAS  Google Scholar 

  7. Padi SSV, Chopra K. Selective angiotensin II type 1 receptor blockade ameliorates cyclosporine nephrotoxicity. Pharmacol Res [Internet]. 2002;45(5):413–20.

    CAS  Google Scholar 

  8. Anarat A, Noyan A, Gonlusen G, Duman N, Tuncer D. Influence of enalapril on experimental cyclosporin A nephrotoxicity. Pediatr Nephrol [Internet]. 1996;10(5):616–20.

    CAS  Google Scholar 

  9. el El-Sayed SM, Abd-Ellah MF, Attia SM. Protective effect of captopril against cisplatin-induced nephrotoxicity in rats. Pak J Pharm Sci. 2008;21(3):255–61.

    CAS  Google Scholar 

  10. Saleh S, Ain-Shoka AA, El-Demerdash E, Khalef MM. Protective effects of the angiotensin II receptor blocker losartan on cisplatin-induced kidney injury. Chemotherapy [Internet]. 2009;55(6):399–406.

    CAS  Google Scholar 

  11. Haghighi M, Nematbakhsh M, Talebi A, Nasri H, Ashrafi F, Roshanaei K, et al. The role of angiotensin II receptor 1 (AT1) blockade in cisplatin-induced nephrotoxicity in rats: gender-related differences. Ren Fail [Internet]. 2012;34(8):1046–51.

    CAS  Google Scholar 

  12. Zamani Z, Nematbakhsh M, Eshraghi-Jazi F, Talebi A, Jilanchi S, Navidi M, et al. Effect of enalapril in cisplatin-induced nephrotoxicity in rats; gender-related difference. Adv Biomed Res [Internet]. 2016;5:14.

    Google Scholar 

  13. Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int [Internet]. 2016;90(1):212–21.

    Google Scholar 

  14. Spiotto MT, Cao H, Mell L, Toback FG. Angiotensin-converting enzyme inhibitors predict acute kidney injury during chemoradiation for head and neck cancer. Anticancer Drugs [Internet]. 2015;26(3):343–9.

    CAS  Google Scholar 

  15. Almanric K, Marceau N, Cantin A, Bertin É. Risk factors for nephrotoxicity associated with cisplatin. Can J Hosp Pharm [Internet]. 2017;70(2):99–106.

    Google Scholar 

  16. Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther [Internet]. 2019;200:148–78.

    CAS  Google Scholar 

  17. Seyedabadi M, Ostad SN, Albert PR, Dehpour AR, Rahimian R, Ghazi-Khansari M, et al. Ser/ Thr residues at α3/β5 loop of Gαs are important in morphine-induced adenylyl cyclase sensitization but not mitogen-activated protein kinase phosphorylation. FEBS J [Internet]. 2012;279(4):650–60.

    CAS  Google Scholar 

  18. Park JH, Scheerer P, Hofmann KP, Choe H-W, Ernst OP. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature [Internet]. 2008;454(7201):183–7.

    CAS  Google Scholar 

  19. Lymperopoulos A, Aukszi B. Angiotensin receptor blocker drugs and inhibition of adrenal beta-arrestin-1-dependent aldosterone production: implications for heart failure therapy. World J Cardiol [Internet]. 2017;9(3):200.

    Google Scholar 

  20. Dabul S, Bathgate-Siryk A, Valero TR, Jafferjee M, Sturchler E, McDonald P, et al. Suppression of adrenal βarrestin1-dependent aldosterone production by ARBs: head-to-head comparison. Sci Rep [Internet]. 2015;5:8116.

    CAS  Google Scholar 

  21. Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L, Schiller K, et al. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther [Internet]. 2010;335(3):572–9.

    CAS  Google Scholar 

  22. Fatemikia H, Seyedabadi M, Karimi Z, Tanha K, Assadi M, Tanha K. Comparison of 99mTc-DMSA renal scintigraphy with biochemical and histopathological findings in animal models of acute kidney injury. Mol Cell Biochem [Internet]. 2017;434(1–2):163–9.

    CAS  Google Scholar 

  23. Tanha K, Fatemikia H, Assadi M, Seyedabadi M. Assessment of the maximum uptake time of 99mTc-DMSA in renal scintigraphy in rat. Iran J Nucl Med [Internet]. 2017;25(2):110–4.

    CAS  Google Scholar 

  24. Wellington D, Mikaelian I, Singer L. Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J Am Assoc Lab Anim Sci. 2013;52(4):481–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA. 2002;99(22):14298–302.

    CAS  PubMed  Google Scholar 

  26. Hanigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther [Internet]. 2003;1:47–61.

    Google Scholar 

  27. Hye Khan MA, Abdul Sattar M, Abdullah NA, Johns EJ. Cisplatin-induced nephrotoxicity causes altered renal hemodynamics in Wistar Kyoto and spontaneously hypertensive rats: role of augmented renal alpha-adrenergic responsiveness. Exp Toxicol Pathol. 2007;59(3–4):253–60.

    PubMed  Google Scholar 

  28. Komaki K, Kusaba T, Tanaka M, Kado H, Shiotsu Y, Matsui M, et al. Lower blood pressure and risk of cisplatin nephrotoxicity: a retrospective cohort study. BMC Cancer. 2017;17(1):144.

    PubMed  PubMed Central  Google Scholar 

  29. Mizuno T, Hayashi T, Shimabukuro Y, Murase M, Hayashi H, Ishikawa K, et al. Lower blood pressure-induced renal hypoperfusion promotes cisplatin-induced nephrotoxicity. Oncology. 2016;90(6):313–20.

    CAS  PubMed  Google Scholar 

  30. Peters AM, Jones DH, Evans K, Gordon I. Two routes for 99mTc-DMSA uptake into the renal cortical tubular cell. Eur J Nucl Med. 1988;14(11):555–61.

    CAS  PubMed  Google Scholar 

  31. Criscione L, de Gasparo M, Buhlmayer P, Whitebread S, Ramjoue HP, Wood J. Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of the angiotensin II AT1-receptor subtype. Br J Pharmacol. 1993;110(2):761–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Le MT, Pugsley MK, Vauquelin G, Van Liefde I. Molecular characterisation of the interactions between olmesartan and telmisartan and the human angiotensin II AT(1) receptor. Br J Pharmacol. 2007;151:952–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Miura S, Karnik SS, Saku K. Review: angiotensin II type 1 receptor blockers: class effects versus molecular effects. J Renin Angiotensin Aldosterone Syst [Internet]. 2011;12(1):1–7.

    CAS  Google Scholar 

  34. Das S, Bandyopadhyay S, Ramasamy A, Prabhu VV, Pachiappan S. A case of losartan-induced severe hyponatremia. J Pharmacol Pharmacother [Internet]. 2015;6(4):219–21.

    CAS  Google Scholar 

  35. Miao Y, Dobre D, Heerspink HJL, Brenner BM, Cooper ME, Parving H-H, et al. Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia. 2011;54(1):44–50.

    CAS  PubMed  Google Scholar 

  36. Goldberg MR, Tanaka W, Barchowsky A, Bradstreet TE, McCrea J, Lo MW, et al. Effects of losartan on blood pressure, plasma renin activity, and angiotensin II in volunteers. Hypertens (Dallas, Tex 1979). 1993;21(5):704–13.

    CAS  Google Scholar 

  37. Kim D-R, Cho J-H, Jang W-S, Kim J-S, Jeong K-H, Lee T-W, et al. Severe hyponatremia associated with the use of angiotensin II receptor blocker/thiazide combinations. Electrolyte Blood Press E BP. 2013;11:56–9.

    PubMed  Google Scholar 

  38. Bjorck S, Mulec H, Johnsen SA, Norden G, Aurell M, Björck S, et al. Renal protective effect of enalapril in diabetic nephropathy. BMJ [Internet]. 1992;304(6823):339–43.

    CAS  Google Scholar 

  39. Bilan VP, Salah EM, Bastacky S, Jones HB, Mayers RM, Zinker B, et al. Diabetic nephropathy and long-term treatment effects of rosiglitazone and enalapril in obese ZSF1 rats. J Endocrinol. 2011;210(3):293–308.

    CAS  PubMed  Google Scholar 

  40. Ishidoya S, Morrissey J, McCracken R, Klahr S. Delayed treatment with enalapril halts tubulointerstitial fibrosis in rats with obstructive nephropathy. Kidney Int. 1996;49(4):1110–9.

    CAS  PubMed  Google Scholar 

  41. Zafar I, Tao Y, Falk S, McFann K, Schrier RW, Edelstein CL. Effect of statin and angiotensin-converting enzyme inhibition on structural and hemodynamic alterations in autosomal dominant polycystic kidney disease model. Am J Physiol Renal Physiol. 2007;293(3):F854–9.

    CAS  PubMed  Google Scholar 

  42. Kocak C, Kocak FE, Akcilar R, Bayat Z, Aras B, Metineren MH, et al. Effects of captopril, telmisartan and bardoxolone methyl (CDDO-Me) in ischemia-reperfusion-induced acute kidney injury in rats: an experimental comparative study. Clin Exp Pharmacol Physiol. 2016;43(2):230–41.

    CAS  PubMed  Google Scholar 

  43. Mansour MA, El-Kashef HA, Al-Shabanah OA. Effect of captopril on doxorubicin-induced nephrotoxicity in normal rats. Pharmacol Res. 1999;39(3):233–7.

    CAS  PubMed  Google Scholar 

  44. Okui S, Yamamoto H, Li W, Gamachi N, Fujita Y, Kashiwamura S-I, et al. Cisplatin-induced acute renal failure in mice is mediated by chymase-activated angiotensin-aldosterone system and interleukin-18. Eur J Pharmacol [Internet]. 2012;685(1–3):149–55.

    CAS  Google Scholar 

  45. Cotter G, Davison BA, Butler J, Collins SP, Ezekowitz JA, Felker GM, et al. Relationship between baseline systolic blood pressure and long-term outcomes in acute heart failure patients treated with TRV027: an exploratory subgroup analysis of BLAST-AHF. Clin Res Cardiol. 2018;107(2):170–81.

    PubMed  Google Scholar 

  46. Kim K-S, Abraham D, Williams B, Violin JD, Mao L, Rockman HA. beta-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury. Am J Physiol Heart Circ Physiol. 2012;303(8):H1001–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mukhopadhyay P, Baggelaar M, Erdelyi K, Cao Z, Cinar R, Fezza F, et al. The novel, orally available and peripherally restricted selective cannabinoid CB2 receptor agonist LEI-101 prevents cisplatin-induced nephrotoxicity. Br J Pharmacol. 2016;173(3):446–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Huang J, Liu X, Niu Y, Zhao L, Yu Y, et al. beta-Arrestin-biased AT1R stimulation promotes extracellular matrix synthesis in renal fibrosis. Am J Physiol Renal Physiol. 2017;313(1):F1-8.

    CAS  PubMed  Google Scholar 

  49. Ó hAinmhire E, Humphreys BD. Fibrotic changes mediating acute kidney injury to chronic kidney disease transition. Nephron [Internet]. 2017;137(4):264–7.

    Google Scholar 

  50. Hultstrom M, Becirovic-Agic M, Jonsson S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics. 2018;50(3):127–41.

    PubMed  Google Scholar 

  51. Zuk A, Bonventre JV. Acute kidney injury. Ann Rev Med. 2016;67:293–307.

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the deputy of research of Bushehr University of Medical Sciences. We are grateful to Dr. Jonathan Violin for fruitful discussion about pharmacological profile of angiotensin receptor modulators, especially TRV027. We thank Tehrandaru pharmaceutical company for providing losartan and valsartan APIs, and Dr. Kiarash Tanha for his consult on statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

A.E. performed pathological examinations, F.E. performed animal experiments, prepared serum and tissue samples, M.A. and K.T. conducted scintigraphy experiments, and M.S. developed the idea, supervised the experiments, analyzed the data, and wrote the paper.

Corresponding author

Correspondence to Mohammad Seyedabadi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests with respect to the publication of the manuscript in the current format.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeeli, A., Ebrahimi, F., Tanha, K. et al. Low-dose angiotensin AT1 receptor β-arrestin-biased ligand, TRV027, protects against cisplatin-induced nephrotoxicity. Pharmacol. Rep 72, 1676–1684 (2020). https://doi.org/10.1007/s43440-020-00172-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00172-5

Keywords

Navigation