Log in

Engineering starch by enzymatic structure design for versatile applications in food industries: a critical review

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

As the second largest production material, starch has important value in textile, food, chemical and other fields. The shortcomings of natural starch can be solved, and its properties can be improved by modifying its structure, develo** original properties, or introducing new functions, making it more suitable for certain application requirements. At present, the methods of starch modification mainly include chemical, physical, and enzymatic modification. In comparison with the two traditional modification methods (chemical and physical modification) mentioned above, enzymatic modification has the advantages of mild conditions, high substrate selectivity, and high product safety, and it is the most ideal green modification method. In this paper, we present an overview of the modified starch by enzymatic structure design. The modification process and mechanism for granule starch and gelatinized starch are summarized. Further, the difficulties encountered in starch modification by enzymatic modification were also analyzed. These analyses could pave a way for understanding and broadening the preparation and applications of modified starch, and provide theoretical references for the utilization of amylase in starch modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Man J, Yang Y, Zhang C, Zhou X, Dong Y, Zhang F, Liu Q, Wei C. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. J Agric Food Chem. 2012;60(36):9332–41. https://doi.org/10.1021/jf302966f.

    Article  CAS  Google Scholar 

  2. Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch. 2010;62(8):389–420. https://doi.org/10.1002/star.201000013.

    Article  CAS  Google Scholar 

  3. Wu Z, Qiao D, Zhao S, Lin Q, Zhang B, **e F. Nonthermal physical modification of starch: an overview of recent research into structure and property alterations. Int J Biol Macromol. 2022;203:153–75. https://doi.org/10.1016/j.ijbiomac.2022.01.103.

    Article  CAS  Google Scholar 

  4. Wang Z, Mhaske P, Farahnaky A, Kasapis S, Majzoobi M. Cassava starch: chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocolloids. 2022;129: 107542. https://doi.org/10.1016/j.foodhyd.2022.107542.

    Article  CAS  Google Scholar 

  5. Mei J, Zhou D, ** Z, Xu X, Chen H. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food Chem. 2015;187:378–84. https://doi.org/10.1016/j.foodchem.2015.04.076.

    Article  CAS  Google Scholar 

  6. Bangar S, Ashogbon A, Singh A, Chaudhary V, Whiteside W. Enzymatic modification of starch: a green approach for starch applications. Carbohydr Polym. 2022;287: 119265. https://doi.org/10.1016/j.carbpol.2022.119265.

    Article  CAS  Google Scholar 

  7. Eliasson AC. Starch in food: structure, function and applications. Boca Raton: CRC Press; 2004.

    Book  Google Scholar 

  8. Maarel Der MJECV, Leemhuis H. Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydr Polym. 2013;93(1):116–21. https://doi.org/10.1016/j.carbpol.2012.01.065.

    Article  CAS  Google Scholar 

  9. Pfahler PL, Kramer HH, Whistler RL. Effect of genes on birefringence end-point temperature of starch grains in maize. Science (New York, NY). 1957;125(3245):441–2. https://doi.org/10.1126/science.125.3245.441.

    Article  CAS  Google Scholar 

  10. Franco CML, do Rio Preto SJ, Ciacco CF. Factors that affect the enzymatic degradation of natural starch granules‐effect of the size of the granules. Starch. 1992;44(11):422–426. https://doi.org/10.1002/star.19920441106.

  11. Fuwa H. Enzymic degradation of starch granules. J Jpn Soc Starch Sci. 1982;29:99–106. https://doi.org/10.5458/JAG1972.29.99.

    Article  CAS  Google Scholar 

  12. Kainuma K, Ishigami H, Kobayashi S. Isolation of a novel raw starch-digesting amylase from a strain of black mold Chalara paradoxa. J Jpn Soc Starch Sci. 1985;32(2):136–41. https://doi.org/10.5458/jag1972.32.136.

    Article  CAS  Google Scholar 

  13. Fannon JE, Hauber RJ, Bemiller JN. Surface pores of starch granules. Cereal Chem. 1992;69(3):284–8.

    Google Scholar 

  14. Benavent-Gil Y, Rosell CM. Comparison of porous starches obtained from different enzyme types and levels. Carbohydr Polym. 2017;157:533–40. https://doi.org/10.1016/j.carbpol.2016.10.047.

    Article  CAS  Google Scholar 

  15. Evans A, Thompson DB. Resistance to α-amylase digestion in four native high-amylose maize starches. Cereal Chem. 2004;81(1):31–7. https://doi.org/10.1094/CCHEM.2004.81.1.31.

    Article  CAS  Google Scholar 

  16. Wang WJ, Powell AD, Oates CG. Pattern of enzyme hydrolysis in raw sago starch: effects of processing history. Carbohydr Polym. 1995;26(2):91–7. https://doi.org/10.1016/0144-8617(94)00090-G.

    Article  CAS  Google Scholar 

  17. Oates CG. Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci Technol. 1997;8(11):375–82. https://doi.org/10.1016/S0924-2244(97)01090-X.

    Article  CAS  Google Scholar 

  18. Yoshimaru T, Shibata M, Fukugomori T, Matsumoto K. Preparation and characteristics of rumen-bypass microcapsules for improvement of productivity in ruminants. J Agric Food Chem. 1999;47(2):554–7. https://doi.org/10.1021/jf980708l.

    Article  CAS  Google Scholar 

  19. Zhu J, Zhong L, Chen W, Song Y, Qian Z, Cao X, Huang Q, Zhang B, Chen H, Chen W. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: a novel and simple colon targeted drug delivery system. Food Hydrocolloids. 2019;95:562–70. https://doi.org/10.1016/j.foodhyd.2018.04.042.

    Article  CAS  Google Scholar 

  20. Jiang S, Yu Z, Hu H, Lv J, Wang H, Jiang S. Adsorption of procyanidins onto chitosan-modified porous rice starch. LWT Food Sci Technol. 2017;84:10–7. https://doi.org/10.1016/j.lwt.2017.05.047.

    Article  CAS  Google Scholar 

  21. Bao L, Zhu X, Dai H, Tao Y, Zhou X, Liu W, Kong Y. Synthesis of porous starch xerogels modified with mercaptosuccinic acid to remove hazardous gardenia yellow. Int J Biol Macromol. 2016;89:389–95. https://doi.org/10.1016/j.ijbiomac.2016.05.003.

    Article  CAS  Google Scholar 

  22. Li W, Li C, Gu Z, Qiu Y, Cheng L, Hong Y, Li Z. Retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme. Food Chem. 2016;203:308–13. https://doi.org/10.1016/j.foodchem.2016.02.059.

    Article  CAS  Google Scholar 

  23. Li W, Li C, Gu Z, Qiu Y, Cheng L, Hong Y, Li Z. Relationship between structure and retrogradation properties of corn starch treated with 1,4-α-glucan branching enzyme. Food Hydrocolloids. 2016;52:868–75. https://doi.org/10.1016/j.foodhyd.2015.09.009.

    Article  CAS  Google Scholar 

  24. Tetlow IJ, Emes MJ. A review of starch-branching enzymes and their role in amylopectin biosynthesis. IUBMB Life. 2014;66(8):546–58. https://doi.org/10.1002/iub.1297.

    Article  CAS  Google Scholar 

  25. Rumbak E, Rawlings DE, Lindsey GG, Woods DR. Characterization of the Butyrivibrio fibrisolvens glgB gene, which encodes a glycogen-branching enzyme with starch-clearing activity. J Bacteriol. 1991;173(21):6732–41. https://doi.org/10.1128/jb.173.21.6732-6741.1991.

    Article  CAS  Google Scholar 

  26. Palomo M, Kralj S, Maarel Der MJECV, Dijkhuizen L. The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Appl Environ Microbiol. 2009;75(5):1355–62. https://doi.org/10.1128/AEM.02141-08.

    Article  CAS  Google Scholar 

  27. Thiemann V, Saake B, Vollstedt A, Schäfer T, Puls J, Bertoldo C, Freudl R, Antranikian G. Heterologous expression and characterization of a novel branching enzyme from the thermoalkaliphilic anaerobic bacterium Anaerobranca gottschalkii. Appl Microbiol Biotechnol. 2006;72(1):60–71. https://doi.org/10.1007/s00253-005-0248-7.

    Article  CAS  Google Scholar 

  28. Palomo M, Pijning T, Booiman T, Dobruchowska JM, Der Vlist JV, Kralj S, Planas A, Loos K, Kamerling JP, Dijkstra BW, Maarel Der MJ, Dijkhuizen L, Leemhuis H. Thermus thermophilus glycoside hydrolase family 57 branching enzyme: crystal structure, mechanism of action, and products formed. J Biol Chem. 2011;286(5):3520–30. https://doi.org/10.1074/jbc.M110.179515.

    Article  CAS  Google Scholar 

  29. Zhou C, Xue Y, Ma Y. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11. BMC Biotechnol. 2015;15(1):97. https://doi.org/10.1186/s12896-015-0197-x.

    Article  CAS  Google Scholar 

  30. Kim EJ, Ryu SI, Bae HA, Huong NT, Lee SB. Biochemical characterisation of a glycogen branching enzyme from Streptococcus mutans: enzymatic modification of starch. Food Chem. 2008;110(4):979–84. https://doi.org/10.1016/j.foodchem.2008.03.025.

    Article  CAS  Google Scholar 

  31. Takata H, Takaha T, Okada S, Hizukuri S, Takagi M, Imanaka T. Structure of the cyclic glucan produced from amylopectin by Bacillus stearothermophilus branching enzyme. Carbohydr Res. 1996;295(3):91–101. https://doi.org/10.1016/S0008-6215(96)90126-3.

    Article  CAS  Google Scholar 

  32. Yoon SA, Ryu SI, Lee SB, Moon TW. Purification and characterization of branching specificity of a novel extracellular amylolytic enzyme from marine hyperthermophilic Rhodothermus marinus. J Microbiol Biotechnol. 2008;18(3):457–64.

    CAS  Google Scholar 

  33. Hong S, Mikkelsen R, Preiss J. Analysis of the amino terminus of maize branching enzyme II by polymerase chain reaction random mutagenesis. Arch Biochem Biophys. 2001;386(1):62–8. https://doi.org/10.1006/abbi.2000.2179.

    Article  CAS  Google Scholar 

  34. Hong S, Preiss J. Localization of C-terminal domains required for the maximal activity or for determination of substrate preference of maize branching enzymes ☆. Arch Biochem Biophys. 2000;378(2):349–55. https://doi.org/10.1006/abbi.2000.1845.

    Article  CAS  Google Scholar 

  35. Kuriki T, Stewart DC, Preiss J. Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties. J Biol Chem. 1997;272(46):28999–9004. https://doi.org/10.1074/jbc.272.46.28999.

    Article  CAS  Google Scholar 

  36. Abad MC, Kim B, Jorge RS, Arni RK, Jack P, Geiger JH. The X-ray crystallographic structure of Escherichia coli branching enzyme. J Biol Chem. 2002;277(44):42164–70. https://doi.org/10.1074/jbc.M205746200.

    Article  CAS  Google Scholar 

  37. Pal K, Kumar S, Sharma S, Garg SK, Alam MS, Xu HE, Agrawal P, Swaminathan K. Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal beta-sandwich in substrate specificity and enzymatic activity. J Biol Chem. 2010;285(27):20897–903. https://doi.org/10.1074/jbc.M110.121707.

    Article  CAS  Google Scholar 

  38. Binderup K, Libessart N, Preiss J. Slow-binding inhibition of branching enzyme by the pseudooligosaccharide BAY e4609 ☆. Arch Biochem Biophys. 2000;374(1):73–8. https://doi.org/10.1006/abbi.1999.1580.

    Article  CAS  Google Scholar 

  39. Feng L, Fawaz R, Hovde S, Gilbert L, Chiou J, Geiger JH. Crystal structures of Escherichia coli branching enzyme in complex with linear oligosaccharides. Biochemistry. 2015;54(40):6207–18. https://doi.org/10.1021/acs.biochem.5b00228.

    Article  CAS  Google Scholar 

  40. Binderup K, Mikkelsen R, Preiss J. Truncation of the amino terminus of branching enzyme changes its chain transfer pattern. Arch Biochem Biophys. 2002;397(2):279–85. https://doi.org/10.1006/abbi.2001.2544.

    Article  CAS  Google Scholar 

  41. Feng L, Fawaz R, Hovde S, Sheng F, Nosrati M, Geiger JH. Crystal structures of Escherichia coli branching enzyme in complex with cyclodextrins. Acta Crystallogr A. 2016;72(5):641–7. https://doi.org/10.1107/S2059798316003272.

    Article  CAS  Google Scholar 

  42. Borovsky D, Smith EE, Whelan WJ, French D, Kikumoto S. The mechanism of Q-enzyme action and its influence on the structure of amylopectin. Arch Biochem Biophys. 1979;198(2):627–31. https://doi.org/10.1016/0003-9861(79)90540-X.

    Article  CAS  Google Scholar 

  43. Rydberg U, Andersson L, Andersson R, Aman P, Larsson H. Comparison of starch branching enzyme I and II from potato. Eur J Biochem. 2001;268(23):6140–5. https://doi.org/10.1046/j.0014-2956.2001.02568.x.

    Article  CAS  Google Scholar 

  44. Borovsky D, Smith EE, Whelan WJ. On the mechanism of amylose branching by potato Q-enzyme. Eur J Biochem. 1976;62(2):307–12. https://doi.org/10.1111/j.1432-1033.1976.tb10162.x.

    Article  CAS  Google Scholar 

  45. Takata H, Takaha T, Okada S, Takagi M, Imanaka T. Cyclization reaction catalyzed by branching enzyme. J Bacteriol. 1996;178(6):1600–6. https://doi.org/10.1128/jb.178.6.1600-1606.1996.

    Article  CAS  Google Scholar 

  46. Aga H, Okamoto I, Taniguchi M, Kawashima A, Abe H, Chaen H, Fukuda S. Improved yields of cyclic nigerosylnigerose from starch by pretreatment with a thermostable branching enzyme. J Biosci Bioeng. 2010;109(4):381–7. https://doi.org/10.1016/j.jbiosc.2009.09.047.

    Article  CAS  Google Scholar 

  47. Martínez MM, Pico J, Gómez M. Synergistic maltogenic α-amylase and branching treatment to produce enzyme-resistant molecular and supramolecular structures in extruded maize matrices. Food Hydrocolloids. 2016;58:347–55. https://doi.org/10.1016/j.foodhyd.2016.02.027.

    Article  CAS  Google Scholar 

  48. Villas-Boas F, Franco CML. Effect of bacterial β-amylase and fungal α-amylase on the digestibility and structural characteristics of potato and arrowroot starches. Food Hydrocolloids. 2016;52:795–803. https://doi.org/10.1016/j.foodhyd.2015.08.024.

    Article  CAS  Google Scholar 

  49. Maarel Der MJECV, Der Veen BV, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol. 2002;94(2):137–55. https://doi.org/10.1016/S0168-1656(01)00407-2.

    Article  Google Scholar 

  50. Ren J, Li Y, Li C, Gu Z, Cheng L, Hong Y, Li Z. Pasting and thermal properties of waxy corn starch modified by 1,4-α-glucan branching enzyme. Int J Biol Macromol. 2017;97:679–87. https://doi.org/10.1016/j.ijbiomac.2017.01.087.

    Article  CAS  Google Scholar 

  51. Aoki N, Umemoto T, Okamoto K, Suzuki Y, Tanaka J. Mutants that have shorter amylopectin chains are promising materials for slow-hardening rice bread. J Cereal Sci. 2015;61:105–10. https://doi.org/10.1016/j.jcs.2014.09.006.

    Article  CAS  Google Scholar 

  52. Takata H, Takaha T, Nakamura H, Fujii K, Okada S, Takagi M, Imanaka T. Production and some properties of a dextrin with a narrow size distribution by the cyclization reaction of branching enzyme. J Ferment Bioeng. 1997;84(2):119–23. https://doi.org/10.1016/S0922-338X(97)82539-1.

    Article  CAS  Google Scholar 

  53. Dupuis JH, Liu Q, Yada RY. Methodologies for increasing the resistant starch content of food starches: a review. Compr Rev Food Sci Food Saf. 2015;13(6):1219–34. https://doi.org/10.1111/1541-4337.12104.

    Article  CAS  Google Scholar 

  54. Li X, Miao M, Jiang H, Xue J, Jiang B, Zhang T, Gao Y, Jia Y. Partial branching enzyme treatment increases the low glycaemic property and α-1,6 branching ratio of maize starch. Food Chem. 2014;164:502–9. https://doi.org/10.1016/j.foodchem.2014.05.074.

    Article  CAS  Google Scholar 

  55. Takata H, Akiyama T, Kajiura H, Kakutani R, Furuyashiki T, Tomioka E, Kojima I, Kuriki T. Application of branching enzyme in starch processing. Biocatal Biotransform. 2010;28(1):60–3. https://doi.org/10.3109/10242420903408393.

    Article  CAS  Google Scholar 

  56. Tian Y, Chen H, Zhang X, Zhan J, ** Z, Wang J. Highly branched dextrin prepared from high-amylose maize starch using waxy rice branching enzyme (WRBE). Food Chem. 2016;203:530–5. https://doi.org/10.1016/j.foodchem.2016.02.061.

    Article  CAS  Google Scholar 

  57. Kajiura H, Takata H, Kuriki T, Kitamura S. Structure and solution properties of enzymatically synthesized glycogen. Carbohydr Res. 2010;345(6):817–24. https://doi.org/10.1016/j.carres.2010.01.013.

    Article  CAS  Google Scholar 

  58. **a W, Zhang K, Su L, Wu J. Microbial starch debranching enzymes: developments and applications. Biotechnol Adv. 2021;50: 107786. https://doi.org/10.1016/j.biotechadv.2021.107786.

    Article  CAS  Google Scholar 

  59. Messaoud EB, Ammar YB, Mellouli L, Bejar S. Thermostable pullulanase type I from new isolated Bacillus thermoleovorans US105: cloning, sequencing and expression of the gene in E. coli. Enzyme Microb Technol. 2002;31(6):827–32. https://doi.org/10.1016/S0141-0229(02)00185-0.

    Article  Google Scholar 

  60. Yang S, Yan Q, Bao Q, Liu J, Jiang Z. Expression and biochemical characterization of a novel type I pullulanase from Bacillus megaterium. Biotechnol Lett. 2017;39(3):397–405. https://doi.org/10.1007/s10529-016-2255-4.

    Article  CAS  Google Scholar 

  61. Domań-Pytka M, Bardowski J. Pullulan degrading enzymes of bacterial origin. Crit Rev Microbiol. 2004;30(2):107–21. https://doi.org/10.1080/10408410490435115.

    Article  CAS  Google Scholar 

  62. Saha BC, Zeikus JG. Novel highly thermostable pullulanase from thermophiles. Trends Biotechnol. 1989;7(9):234–9. https://doi.org/10.1016/0167-7799(89)90013-9.

    Article  CAS  Google Scholar 

  63. Kim JH, Kim HR, Lim MH, Ko HM, Chin JE, Lee HB, Kim IC, Bai S. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, α-amylase and debranching enzyme. Biotechnol Lett. 2010;32(5):713–9. https://doi.org/10.1007/s10529-010-0212-1.

    Article  CAS  Google Scholar 

  64. Duan X, Chen S, Chen J, Wu J. Enhancing the cyclodextrin production by synchronous utilization of isoamylase and α-CGTase. Appl Microbiol Biotechnol. 2013;97(8):3467–74. https://doi.org/10.1007/s00253-012-4292-9.

    Article  CAS  Google Scholar 

  65. Hii SL, Tan JS, Ling TC, Ariff AB. Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res. 2012;2012(1): 921362. https://doi.org/10.1155/2012/921362.

    Article  CAS  Google Scholar 

  66. Ma YJ, Lin LL, Chien HR, Hsu WH. Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol Appl Biochem. 2000;31(1):55–9. https://doi.org/10.1042/ba19990080.

    Article  CAS  Google Scholar 

  67. Kelly RM, Dijkhuizen L, Leemhuis H. The evolution of cyclodextrin glucanotransferase product specificity. Appl Microbiol Biotechnol. 2009;84(1):119–33. https://doi.org/10.1007/s00253-009-1988-6.

    Article  CAS  Google Scholar 

  68. Der Veen BAV, Leemhuis H, Kralj S, Uitdehaag JCM, Dijkstra BW, Dijkhuizen L. Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin-glycosyltransferase. J Biol Chem. 2001;276(48):44557–62. https://doi.org/10.1074/jbc.M107533200.

    Article  CAS  Google Scholar 

  69. Chen F, **e T, Yue Y, Qian S, Chao Y, Pei J. Molecular dynamic analysis of mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to γ-cyclodextrin. J Mol Model. 2015;21(8):208. https://doi.org/10.1007/s00894-015-2734-x.

    Article  CAS  Google Scholar 

  70. Zhang M, Wang J, ** Z. Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels–Alder reaction and its drug delivery. Int J Biol Macromol. 2018;114:381–91. https://doi.org/10.1016/j.ijbiomac.2018.03.106.

    Article  CAS  Google Scholar 

  71. Kaper T, Leemhuis H, Uitdehaag JCM, Veen Der BAV, Dijkstra BW, Der Maarel MJECV, Dijkhuizen L. Identification of acceptor substrate binding subsites + 2 and + 3 in the amylomaltase from Thermus thermophilus HB8. Biochemistry. 2007;46(17):5261–9. https://doi.org/10.1021/bi602408j.

    Article  CAS  Google Scholar 

  72. Imamura H, Fushinobu S, Jeon BS, Wakagi T, Matsuzawa H. Identification of the catalytic residue of Thermococcus litoralis 4-α-glucanotransferase through mechanism-based labeling. Biochemistry. 2001;40(41):12400–6. https://doi.org/10.1021/bi011017c.

    Article  CAS  Google Scholar 

  73. Do HV, Lee EJ, Park JH, Park KH, Shim JY, Mun S, Kim YR. Structural and physicochemical properties of starch gels prepared from partially modified starches using Thermus aquaticus 4-α-glucanotransferase. Carbohydr Polym. 2012;87(4):2455–63. https://doi.org/10.1016/j.carbpol.2011.11.021.

    Article  CAS  Google Scholar 

  74. Le QT, Lee CK, Kim YW, Lee SJ, Zhang R, Withers SG, Kim YR, Auh JH, Park KH. Amylolytically-resistant tapioca starch modified by combined treatment of branching enzyme and maltogenic amylase. Carbohydr Polym. 2009;75(1):9–14. https://doi.org/10.1016/j.carbpol.2008.06.001.

    Article  CAS  Google Scholar 

  75. Endo T, Zheng M, Zimmermann W. Enzymatic synthesis and analysis of large-ring cyclodextrins. Aust J Chem. 2002;55(2):39–48. https://doi.org/10.1071/CH01189.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Science and Technology Support Program (Modern Agriculture) of Jiangsu Province (BE2022323), the Natural Science Foundation of Jiangsu Province (BK20221074), the National First-class Discipline Program of Food Science and Technology (JUFSTR20180204), and the Jiangsu province “Collaborative Innovation Center of Food Safety and Quality Control” industry development program.

Author information

Authors and Affiliations

Authors

Contributions

MH and HJ contributed to the design and writing of the manuscript’s contents. HK, XB, CL and ZG critically revised, extended and developed the manuscript. ZL conceptualized the idea, drafted the outline, and finalized the manuscript with amendments and corrections. All the authors have reviewed and approved the final submitted manuscript.

Corresponding author

Correspondence to Zhaofeng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Jiang, H., Kong, H. et al. Engineering starch by enzymatic structure design for versatile applications in food industries: a critical review. Syst Microbiol and Biomanuf 3, 12–27 (2023). https://doi.org/10.1007/s43393-022-00139-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00139-y

Keywords

Navigation