Log in

Novel P-Hausdorff distance-based fault diagnosis scheme for submodules in hybrid MMCs

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In the operational context of the hybrid modular multilevel converters (MMC), the submodule stands out as a pivotal and vulnerable element, susceptible to various faults (Zheng et al. in IEEE Access 7:34946–34953, 2019; Xue et al. in IEEE Trans Power Deliv 33:1448–1458, 2017; Lee et al. Reactive power control operation scheme of LCC-HVDC for maximizing shunt capacitor size in AC systems. IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). pp 1–5, 2015; Lin et al. in IEEE Trans Power Deliv 31:1342–1350, 2015; Debnath et al. in IEEE Trans Power Electron 30:37–53, 2014), including insulated gate bipolar transistors (IGBT) open-circuit, short-circuit, capacitor faults, etc. Therefore, accurate and rapid diagnosis of submodule faults is crucial to maintaining the reliability of both the hybrid MMC and its associated DC system (Xu et al. in IEEE Trans Power Electron 31:2720–2729, 2015; Wang et al. in IEEE Trans Power Deliv 32:1535–1544, 2016; Guo et al. in IEEE Trans Power Deliv 32:666–677, 2016; Zeng et al. in IEEE Trans Power Deliv 30:1298–1306, 2014). To enhance the reliability of the hybrid MMC, a comprehensive study on fault analysis and a diagnosis scheme based on waveform similarity for the submodules in hybrid the MMC are proposed. The devised scheme leverages a sliding window approach to capture essential feature data and employs partial Hausdorff (P-Hausdorff) distance for the diagnosis of open-circuit faults within the submodules. Finally, the proposed diagnosis scheme is implemented in MATLAB and the effectiveness and validity of the scheme are verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Zheng, A., Guo, C., Cui, P., et al.: Comparative study on small-signal stability of LCC-HVDC system with different control strategies at the inverter station. IEEE Access 7, 34946–34953 (2019)

    Article  Google Scholar 

  2. Xue, Y., Zhang, X.P., Yang, C.: Commutation failure elimination of LCC HVDC systems using thyristor-based controllable capacitors. IEEE Trans. Power Deliv. 33(3), 1448–1458 (2017)

    Article  Google Scholar 

  3. Lee, G., Moon, S., Kim, R., et al.: Reactive power control operation scheme of LCC-HVDC for maximizing shunt capacitor size in AC systems. IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). pp. 1–5 (2015)

  4. Lin, W., Jovcic, D., Nguefeu, S., et al.: Full-bridge MMC converter optimal design to HVDC operational requirements. IEEE Trans. Power Deliv. 31(3), 1342–1350 (2015)

    Article  Google Scholar 

  5. Debnath, S., Qin, J., Bahrani, B., et al.: Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30(1), 37–53 (2014)

    Article  Google Scholar 

  6. Xu, J., Zhao, P., Zhao, C.: Reliability analysis and redundancy configuration of MMC with hybrid submodule topologies. IEEE Trans. Power Electron. 31(4), 2720–2729 (2015)

    Article  Google Scholar 

  7. Wang, B., Wang, X., Bie, Z., et al.: Reliability model of MMC considering periodic preventive maintenance. IEEE Trans. Power Deliv. 32(3), 1535–1544 (2016)

    Article  Google Scholar 

  8. Guo, J., Liang, J., Zhang, X., et al.: Reliability analysis of MMCs considering submodule designs with individual or series-operated IGBTs. IEEE Trans. Power Deliv. 32(2), 666–677 (2016)

    Article  Google Scholar 

  9. Zeng, R., Xu, L., Yao, L., et al.: Precharging and DC fault ride-through of hybrid MMC-based HVDC systems. IEEE Trans. Power Deliv. 30(3), 1298–1306 (2014)

    Article  Google Scholar 

  10. Yang, S., Bryant, A., Mawby, P., et al.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441–1451 (2011)

    Article  Google Scholar 

  11. Richardeau, F., Pham, T.T.L.: Reliability calculation of multilevel converters: theory and applications. IEEE Trans. Industr. Electron. 60(10), 4225–4233 (2012)

    Article  Google Scholar 

  12. Liu, C., Deng, F., Cai, X., et al.: Submodule open-circuit fault detection for modular multilevel converters under light load condition with rearranged bleeding resistor circuit. IEEE Trans. Power Electron. 37(4), 4600–4613 (2021)

    Article  Google Scholar 

  13. Wang, Z., Peng, L.: Grou** capacitor voltage estimation and fault diagnosis with capacitance self-updating in modular multilevel converters. IEEE Trans. Power Electron. 36(2), 1532–1543 (2020)

    Article  Google Scholar 

  14. Zhang, J., Hu, X., Xu, S., et al.: Fault diagnosis and monitoring of modular multilevel converter with fast response of voltage sensors. IEEE Trans. Industr. Electron. 67(6), 5071–5080 (2019)

    Article  Google Scholar 

  15. Liu, Z., **ao, L., Wang, Q., et al.: Open-circuit fault diagnosis for MMC based on event-triggered and capacitor current state observation. IEEE Trans. Circuits Syst. II Express Briefs 69(2), 534–538 (2021)

    Google Scholar 

  16. Chen, X., Liu, J., Deng, Z., et al.: A diagnosis strategy for multiple IGBT open-circuit faults of modular multilevel converters. IEEE Trans. Power Electron. 36(1), 191–203 (2020)

    Article  Google Scholar 

  17. Shao, S., Watson, A.J., Clare, J.C., et al.: Robustness analysis and experimental validation of a fault detection and isolation method for the modular multilevel converter. IEEE Trans. Power Electron. 31(5), 3794–3805 (2015)

    Article  Google Scholar 

  18. Deng, F., Chen, Z., Khan, M.R., et al.: Fault detection and localization method for modular multilevel converters. IEEE Trans. Power Electron. 30(5), 2721–2732 (2014)

    Article  Google Scholar 

  19. Wang, J., Ma, H., Bai, Z.: A submodule fault ride-through strategy for modular multilevel converters with nearest level modulation. IEEE Trans. Power Electron. 33(2), 1597–1608 (2017)

    Article  Google Scholar 

  20. Liu, C., Deng, F., Heng, Q., et al.: Fault localization strategy for modular multilevel converters under submodule lower switch open-circuit fault. IEEE Trans. Power Electron. 35(5), 5190–5204 (2019)

    Article  Google Scholar 

  21. Khomfoi, S., Tolbert, L.M.: Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques. IEEE Trans. Industr. Electron. 54(6), 2954–2968 (2007)

    Article  Google Scholar 

  22. Zhou, D., Qiu, H., Yang, S., et al.: Submodule voltage similarity-based open-circuit fault diagnosis for modular multilevel converters. IEEE Trans. Power Electron. 34(8), 8008–8016 (2018)

    Article  Google Scholar 

  23. Qu, X., Dong, K., Zhao, J., et al.: An Identification and Location Method for Power Quality Disturbance Sources in MMC Converter Based on KNN Algorithm. 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE). pp. 170–177 (2021)

  24. Yang, Q., Qin, J., Saeedifard, M.: Analysis, detection, and location of open-switch submodule failures in a modular multilevel converter. IEEE Trans. Power Delivery 31(1), 155–164 (2015)

    Article  Google Scholar 

  25. Wang, K.H., Zhao, Z.T., Luo, J.H., et al.: Simulation and performance analysis of hydrogen storage systems for wind solar complementary power generation. Energy Conservation. 38(11), 79–84 (2019)

    Google Scholar 

  26. Xu, J., Zhao, C., **ong, Y., et al.: Optimal design of MMC levels for electromagnetic transient studies of MMC-HVDC. IEEE Trans. Power Delivery 31(4), 1663–1672 (2016)

    Article  Google Scholar 

  27. **, M.: Research on Fault Feature Extraction and Real-time Location Strategy of MMC Sub-module Based on Data Mining. Southeast University. (2021)

  28. Che, C.: Hausdorff Distance Measurement Fusion Based on Improved Image Retrieval Method of Multi-feature. Harbin University of Science and Technology (2017)

  29. Wang, J. H.: Transient Characteristics of UHV Transmission Lines and the Analysis of Impacts on Protections. Southeast University (2019)

Download references

Acknowledgements

This work was supported in part by the Key Technologies Research and Development Program of China under Award Number 2022YFF010600.

Funding

Key Technologies Research and Development Program, 2022YFF010600, Yiming Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Wu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Wu, Y., Zeng, Z. et al. Novel P-Hausdorff distance-based fault diagnosis scheme for submodules in hybrid MMCs. J. Power Electron. (2024). https://doi.org/10.1007/s43236-024-00809-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43236-024-00809-1

Keywords

Navigation