Log in

A data-driven model fusion methodology for health state evaluation of DC bus capacitor in PWM rectifier

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In order to improve the control performance and reliability of the pulse-width modulation (PWM) rectifiers in electric vehicle (EV) charging systems, the evaluation of DC bus capacitor health status is critical. In order to accurately monitor the health status of DC bus capacitors, a data-driven model fusion method is developed. In the method, multi-layer perceptron, random forest, and XGBoost are adopted as the base learners that produce separate row predictions. The second-level learner, support vector machine (SVM) accepts the outputs of the previous learners and integrates them into the final health status prediction. Meanwhile, the feature vector is constructed by only collecting the grid voltage, the grid current and the AC component of DC bus voltage. With the feature vector as input, the proposed method is able to accurately predict the health status of DC bus capacitor. Finally, we built a three-phase PWM rectifier as an experimental platform for validation. The experimental results verify that the proposed method fully utilizes the advantages of data-driven and model fusion, and achieves a high accuracy in the health state evaluation of DC bus capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tianbao, S., **, W., Yun, Z., Fei, G., Yu, T., Pholboon, S.: Suppression method of current harmonic for three-phase PWM rectifier in EV charging system. IEEE Trans. Veh. Technol. 69(9), 9634–9642 (2020)

    Article  Google Scholar 

  2. **, W., Yuxuan, B., Fei, G., Tianbao, S., Yun, Z.: An improved deadbeat control method for single-phase PWM rectifiers in charging system for EVs. IEEE Trans. Veh. Technol. 68(10), 9672–9681 (2019)

    Article  Google Scholar 

  3. Soliman, H., Wang, H., Blaabjerg, F.: A Review of the condition monitoring of capacitors in power electronic converters. IEEE Trans. Ind. Appl. 52(6), 4976–4989 (2016)

    Article  Google Scholar 

  4. Huai, W., Liserre, M., Blaabjerg, F.: Toward reliable power electronics: challenges, design tools, and opportunities. Ind Electron. Mag. IEEE 7(2), 17–26 (2013)

    Article  Google Scholar 

  5. Anton, D., Su, K.N., Kwan, K.Y.: Future drives of home appliances: elimination of the electrolytic DC-link capacitor in electrical drives for home appliances. IEEE Ind. Electron. Mag. 9(3), 10–18 (2015)

    Article  Google Scholar 

  6. Hang, G., Bin, W., Dewei, X., Zargari, N.R.: A model predictive power factor control scheme with active dam** function for current source rectifiers. IEEE Trans. Power Electron. 33(3), 2655–2667 (2018)

    Article  Google Scholar 

  7. Wiseman, J., Bin, W.: Active dam** control of a high-power PWM current-source rectifier for line-current THD reduction. In: Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual IEEE, (2004)

  8. Zhongxu, W., Yi, Z., Huai, W., Blaabjerg, F.: Capacitor condition monitoring based on the DC-side start-up of modular multilevel converters. IEEE Trans. Power Electron. 35(6), 5589–5593 (2020)

    Article  Google Scholar 

  9. Wechsler, A., Mecrow, B.C., Atkinson, D.J., Bennett, J.W.: Condition monitoring of dc-link capacitors in aerospace drives. IEEE Trans. Ind. Appl. 48(6), 1866–1874 (2012)

    Article  Google Scholar 

  10. Pu, X.S., Nguyen, T.H., Lee, D.C., Lee, K.B., Kim, J.M.: Fault diagnosis of dc-link capacitors in three-phase ac/dc PWM converters by online estimation of equivalent series resistance. IEEE Trans. Ind. Electron. 60(9), 4118–4127 (2013)

    Article  Google Scholar 

  11. Hayek, A.E., Venet, P., Mitova, R., Wang, M.X., Sari, A.: Aging laws of electrolytic capacitors, evolution of functional performance and expected lifetime of electrical equipments, pp. 16–17, (2018)

  12. Khorasgani, H., Kulkarni, C., Biswas, G., Celaya, J.R., Goebel, K.: Degredation modeling and remaining useful life prediction of electrolytic capacitors under thermal overstress condition using particle filters. In: Proc. Annu. Conf. Progn. Health Manag. Soc., (2013)

  13. Shen, Y., Steven, X.D., **aochen, X., Hao, L.: A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 61(11), 6418–6428 (2014)

    Article  Google Scholar 

  14. **aodong, J., Ming, Z., Yuan, D., Qibo, Y., Jay, L.: Assessment of data suitability for machine prognosis using maximum mean discrepancy. IEEE Trans. Ind. Electron. 65(7), 5872–5881 (2018)

    Article  Google Scholar 

  15. Yingyi, L., Jiahuan, X., Haiwei, Y., Jianxun, L., Zhao, M.: Health assessment and prediction of overhead line based on health Index. IEEE Trans. Ind. Electron. 66(7), 5546–5557 (2019)

    Article  Google Scholar 

  16. Minghang, Z., Shisheng, Z., Xuyun, F., Bao**, T., Michael, P.: Deep residual shrinkage networks for fault diagnosis. IEEE Trans. Industr. Inf. 16(7), 4681–4690 (2019)

    Google Scholar 

  17. Zhiqiang, L., Ren**g, G., Lin, C.: Li-Ion battery state of health estimation and remaining useful life prediction through a model-data-fusion method. IEEE Trans. Power Electron. 36(6), 6228–6240 (2021)

    Article  Google Scholar 

  18. **, Z., Benhuan, G., Shu, W., Tianyou, C.: Identification of abnormal conditions for fused magnesium melting process based on deep learning and multisource information fusion. IEEE Trans. Ind. Electron. 69(3), 3017–3026 (2022)

    Article  Google Scholar 

  19. Bharagava, C., Sharma, P.K., Mohan, S., Sanjeevikumar, P., Mitalo, M.: A state of art review of health prognostics and condition monitoring of electronic components. IEEE Access 8, 75163–75183 (2020)

    Article  Google Scholar 

  20. Qin, Q., Zhao, S., Chen, S., Huang, D., Liang, J.: Adaptive and robust prediction for the remaining useful life of electrolytic capacitors. Microelectron. Reliab. 87, 64–74 (2018)

    Article  Google Scholar 

  21. Soualhi, A., Makdessi, M., German, R., Rivas, F., Clerc, G.: Heath monitoring of capacitors and super capacitors using the neo-fuzzy neural approach. IEEE Trans. Industr. Inf. 14(1), 24–34 (2018)

    Article  Google Scholar 

  22. Fanyu, W., Yuanfeng, C., Hao, T., Zequn, L., Yiru, P., Yichun, W.: Prognostics of aluminum electrolytic capacitors based on chained-SVR and 1D-CNN ensemble learning. Arab. J. Sci. Eng. 47(11), 13995–14012 (2022)

    Article  Google Scholar 

  23. Wang, Z., Qu, J., Fang, X., Li, H., Ren, H.: Prediction of early stabilization time of electrolytic capacitor based on ARIMA-Bi LSTM hybrid model. Neurocomputing 463, 63–79 (2020)

    Google Scholar 

  24. Abo-Khalil, A.G., Lee, D.C.: DC-link capacitor estimation in AC/DC/AC PWM converters using voltage injection. IEEE Trans. Ind. Appl. 44(5), 1631–1637 (2008)

    Article  Google Scholar 

  25. Zhao, S., Blaabjerg, F., Wang, H.: An overview of artificial intelligence applications for power electronics. IEEE Trans. Power Electron. 36(4), 4633–4658 (2021)

    Article  Google Scholar 

  26. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2015)

    Article  Google Scholar 

  27. Bo, W., **lei, M., Pinzhi, Z.: Aging condition monitoring for aluminum electrolytic capacitor in variable speed drives. IEEE Trans. Power Electron. 37(4), 4564–4574 (2022)

    Article  Google Scholar 

  28. Grinsztajn, L., Oyallon, E. and Varoquaux, G.: Why do tree-based models still outperform deep learning on tabular data?, ar**v: 2207.08815. [Online]. https://arxiv.org/abs/2207.08815 (2022)

Download references

Funding

This work was funded by National Natural Science Foundation of China to Yun Zhang with Grant number 51977145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Xu, C., Song, T. et al. A data-driven model fusion methodology for health state evaluation of DC bus capacitor in PWM rectifier. J. Power Electron. 24, 640–651 (2024). https://doi.org/10.1007/s43236-023-00744-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-023-00744-7

Keywords

Navigation