Log in

Differential mode voltage reduction in dual inverters used to drive open-end winding interior permanent magnet synchronous motors

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In this paper, a level-shift-based voltage modulation method for dual inverters used to drive open-end winding interior permanent magnet synchronous motors is presented. Notably, the conventional level-shift-based voltage modulation method used for dual inverters presents a disadvantage, since the differential mode voltage (DMV) significantly increases compared with that in the basic control method of dual inverters. This defect can be attributed to the fact that the conventional level-shift-based voltage modulation method uses a voltage vector combination that generates the maximum DMV peak value. To address this problem, the proposed method reduces the DMV by explicitly switching the voltage vectors that generate a large DMV. In this paper, the DMV generation process in a dual-inverter system is analyzed. Moreover, the DMV tendencies of the conventional and proposed methods are divided into operating regions according to the modulation index, which are further analyzed. The effectiveness and performance of the proposed voltage modulation method for a dual inverter are verified based on simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data is provided in experimental results section of this paper.

References

  1. Lee, K.-B. (2019) Advanced Power Electronics, 1st edn., pp. 141–210. Munundang, Seoul

    Google Scholar 

  2. Seo, D.-W., Bak, Y., Lee, K.-B.: An improved rotating restart method for a sensorless permanent magnet synchronous motor drive system using repetitive zero voltage vectors. IEEE Trans. Ind. Electron. 67(5), 3496–3504 (2020)

    Article  Google Scholar 

  3. Ma, L., Wang, F., Shen, W., Wang, J.: Fault-tolerant control based on modified exogenous kalman filter for PMSM. J. Electr. Eng. Technol. 18(2), 1313–1323 (2023)

    Article  Google Scholar 

  4. Li, H., Liu, Z., Shao, J.: A Model predictive current control based on adaline neural network for PMSM. J. Electr. Eng. Technol. 18(2), 953–960 (2023)

    Article  Google Scholar 

  5. Al-kaf, H., Lee, K.-B.: Robust hybrid current controller for permanent-magnet synchronous motors. J. Electr. Eng. Technol. 18(3), 1863–1872 (2023)

    Article  Google Scholar 

  6. Yang, C., Hua, T., Dai, Y., Huang, X., Zhang, D.: Second-order nonlinear disturbance observer based adaptive disturbance rejection control for pmsm in electric vehicles. J. Electr. Eng. Technol. 18(3), 1919–1930 (2023)

    Article  Google Scholar 

  7. Kim, H.-W., Kang, S.-H., Jung, S.-Y., Yeo, H.-K.: Design and analysis of permanent-magnet vernier machine for direct-driven wind power generator considering pole-slot combinations. J. Electr. Eng. Technol. 18(1), 319–327 (2023)

    Article  Google Scholar 

  8. Zhang, Y., Yan, Q., Huang, N., Wu, Z., Gong, H., Du, G.: Fuzzy approximation-based backstep** control of permanent magnet synchronous motor. J. Electr. Eng. Technol. 18(3), 2115–2126 (2023)

    Article  Google Scholar 

  9. Zhu, Y., Xaio, M., Cao, B., Lu, K., Wu, Z.: A position error compensation method for sensorless IPMSM based on the voltage output of the current-loop PI-regulator. J. Electr. Eng. Technol. 17(2), 1051–1059 (2022)

    Article  Google Scholar 

  10. Song, J., Song, W.-X., Liu, Z.-J., Ma, S.-C.: Active dam** stability control method based on voltage compensation for ipmsm drives with small DC-link capacitor. J. Electr. Eng. Technol. 18(2), 1161–1172 (2023)

    Article  Google Scholar 

  11. Lee, H.-W., Cho, D.-H., Lee, K.-B.: Rotor position estimation over entire speed range of interior permanent magnet synchronous motors. J. Power Electron. 21(4), 639–702 (2021)

    Article  Google Scholar 

  12. Oh, Y.-G., Han, B., Lee, K.-B.: Direct self-control of interior permanent magnet synchronous motors with a constant switching frequency. J. Electr. Eng. Technol. 35(17), 1121–1130 (2022)

    Article  Google Scholar 

  13. He, L., Wu, X., Nie, Y., Shi, W.: loss prediction of vehicle permanent magnet synchronous motor based on deep learning. J. Electr. Eng. Technol. 18(2), 1053–1063 (2023)

    Article  Google Scholar 

  14. Zhang, W., **ao, F., Liu, J., Mai, Z., Li, C.: Maximum torque per ampere control for IPMSM traction system based on current angle signal injection method. J. Electr. Eng. Technol. 15(4), 1681–1691 (2020)

    Article  Google Scholar 

  15. Kim, S.-Y., Jo, H.-R., Cho, S., Lee, K.-B.: Estimation of junction temperature in a two-level insulated-gate bipolar transistor inverter for motor drives. J. Electr. Eng. Technol. 17(2), 1111–1119 (2022)

    Article  Google Scholar 

  16. Moon, J.-H., Kang, D.-W.: Torque ripple and cogging torque reduction method of ipmsm using asymmetric shoe of stator and notch in stator. J. Electr. Eng. Technol. 17(6), 3465–3471 (2022)

    Google Scholar 

  17. Yoon, H.-J., Bae, S.-J., Kim, N.-H., Kim, Y.-J., Jung, S.-Y.: Torque equation to predict torque harmonic characteristic of IPMSM according to winding arrangement, number of phases, and pole-slot combination. J. Electr. Eng. Technol. 18(1), 339–346 (2023)

    Article  Google Scholar 

  18. Zhu, Y., **ao, M., Tao, B., Lu, K., Wu, Z.: Discrete-time position observer design for sensorless IPMSM drives. J. Electr. Eng. Technol. 17(4), 2309–2318 (2022)

    Article  Google Scholar 

  19. Zhong, L., Hu, S.: Fast modulation strategy for open-end winding PMSM with common DC bus. J. Power Electron. 21(7), 1009–1019 (2021)

    Article  Google Scholar 

  20. Song, Z., Ma, X., Yu, Y.: Design of zero-sequence current controller for open-end winding PMSMs considering current measurement errors. IEEE Trans. Power Electron. 35(6), 6127–6138 (2020)

    Article  Google Scholar 

  21. Sadhu, N.L., Teegala, B.R., Marapu, V.K.: Constant and variable switching frequency random PWM strategies for open-end winding induction motor drive. J. Power Electron. 20(6), 1488–1495 (2020)

    Article  Google Scholar 

  22. Song, Z., Zhou, F., Yu, Y., Zhang, R., Hu, S.: Open-phase fault-tolerant predictive control strategy for open-end-winding permanent magnet synchronous machines without postfault controller reconfiguration. IEEE Trans. Ind. Electron. 68(5), 3770–3781 (2021)

    Article  Google Scholar 

  23. Lin, X.G., Huang, W.X., Wang, L.: SVPWM strategy based on the hysteresis controller of zero-sequence current for three-phase open-end winding PMSM. IEEE Trans. Power Electron. 34(4), 3474–3486 (2019)

    Article  Google Scholar 

  24. Menon, R., Azeez, N.A., Kadam, A.H., Williamson, S.S., Bacioiu, C.: An instantaneous power balancing technique for an open-end IM drive using carrier-based modulation for vehicular application. IEEE Trans. Ind. Electron. 66(12), 9217–9225 (2019)

    Article  Google Scholar 

  25. Zhu, B., Tan, C., Farshadnia, M., Fletcher, J.E.: Postfault zero sequence current injection for open-circuit diode/switch failure in open-end winding PMSM machines. IEEE Trans. Ind. Electron. 66(7), 5124–5132 (2019)

    Article  Google Scholar 

  26. Aghazadeh, A., Jafari, M., Khodabakhshi-Javinani, N., Nafisi, H., Namvar, H.J.: Introduction and advantage of space opposite vectors modulation utilized in dual two-level inverters with isolated DC sources. IEEE Trans. Ind. Electron. 66(10), 7581–7592 (2019)

    Article  Google Scholar 

  27. Kiadehi, A.D., Drissi, K.E.K., Pasquier, C.: Voltage THD reduction for dual-inverter fed open-end load with isolated DC sources. IEEE Trans. Ind. Electron. 64(3), 2102–2111 (2017)

    Article  Google Scholar 

  28. Amerise, A., Mengoni, M., Zarri, L., Tani, A., Rubino, S., Bojoi, R.: Open-end windings induction motor drive with floating capacitor bridge at variable DC-link voltage. IEEE Trans. Ind. Appl. 55(3), 2741–2749 (2019)

    Article  Google Scholar 

  29. Sun, D., Zheng, Z., Lin, B., Zhou, W., Chen, M.: A hybrid PWM based field weakening strategy for a hybrid-inverter-driven open winding PMSM system. IEEE Trans. Energy Convers. 32(3), 857–865 (2017)

    Article  Google Scholar 

  30. Ewanchuk, J., Salmon, J., Chapelsky, C.: A method for supply voltage boosting in an open-ended induction machine using a dual inverter system with a floating capacitor bridge. IEEE Trans. Power Electron. 28(3), 1348–1357 (2013)

    Article  Google Scholar 

  31. Nguyen, N.K., Meinguet, F., Semail, E., Kestelyn, X.: Fault-tolerant operation of an open-end winding five-phase PMSM drive with short circuit inverter fault. IEEE Trans. Ind. Electron. 63(1), 595–605 (2016)

    Article  Google Scholar 

  32. Karampuri, R., Jain, S., Somasekhar, V.T.: Common-mode current elimination PWM strategy along with current ripple reduction for open-winding five-phase induction motor drive. IEEE Trans. Power Electron. 34(7), 6659–6668 (2019)

    Article  Google Scholar 

  33. An, Q., Liu, J., Peng, Z., Sun, L., Sun, L.: Dual-space vector control of open-end winding permanent magnet synchronous motor drive fed by dual inverter. IEEE Trans. Power Electron. 31(12), 8329–8342 (2016)

    Google Scholar 

  34. Zhan, H., Zhu, Z.Q., Odavic, M.: Analysis and suppression of zero sequence circulating current in open winding PMSM drives with common DC bus. IEEE Trans. Ind. Appl. 53(4), 3609–3620 (2017)

    Article  Google Scholar 

  35. Huang, J., Li, K.: Eliminating common-mode voltage spikes caused by dead-time effect in three-phase inverters through symmetrical rotation reverse carriers”. IEEE Trans. Power Electron. 36(5), 6056–6067 (2021)

    Article  Google Scholar 

  36. Nian, H., Hu, W.: Torque ripple suppression method with reduced switching frequency for open-winding PMSM drives with common DC bus. IEEE Trans. Ind. Electron. 66(1), 674–684 (2018)

    Google Scholar 

  37. Zhou, Y., Nian, H.: Zero-sequence current suppression strategy of open winding PMSG system with common DC bus based on zero vector redistribution. IEEE Trans. Ind. Electron. 62(6), 3399–3408 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20206910100160 and No. 20225500000110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyo-Beum Lee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HW., Lee, DH. & Lee, KB. Differential mode voltage reduction in dual inverters used to drive open-end winding interior permanent magnet synchronous motors. J. Power Electron. 23, 1473–1482 (2023). https://doi.org/10.1007/s43236-023-00682-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-023-00682-4

Keywords

Navigation