Log in

Hybrid passivity-based control for stability and robustness enhancement in DC microgrids with constant power loads

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In a DC microgrid, the negative dam** characteristics of a constant power load can deteriorate the stability of the whole system. To improve the robustness and stability of the DC microgrid, a hybrid passivity-based control of dam** injection is presented in this paper. The stability of the closed-loop system is ensured by the energy dissipation property of the passivity-based control. A proportional-integral controller is integrated with the passivity-based controller to form a hybrid passivity-based control to improve control robustness. A small-signal model of a DC power system with constant power load is derived in detail, and the stability of the system is analyzed with the Lyapunov eigenvalue method. The proposed hybrid passivity-based control provides the system with a faster recovery and a larger power boundary when compared with the typical voltage-current dual-loop control. First, the proposed control is verified by simulation of the DC power system based on MATLAB/Simulink, and the feasibility and superiority of the proposed control are further verified by hardware-in-loop (HIL) experiments based on real-time laboratory (RT-Lab) and a TI DSP TMS320 F28335.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Valderrama-Blavi, H., Bosque, J.M., Guinjoan, F.: Power adaptor device for domestic DC microgrids based on commercial MPPT inverters. IEEE Trans. Ind. Elec. 60(3), 1191–1203 (2013)

    Article  Google Scholar 

  2. Nejabatkhah, F., Li, Y.W.: Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans Power Electron. 30(12), 7072–7089 (2015)

    Article  Google Scholar 

  3. Guerrero, J.M., Don, F.D., Tan: Guest editorial special issue on structured DC microgrids. IEEE J. Emerg. Sel. Topics Power Electron. 5(3), 925–927 (2017)

    Article  Google Scholar 

  4. Elsayed, A.T., Ahmed, A.: DC microgrids and distribution systems: an overview. Electr. Power Syst. Res. 119, 407–417 (2015)

    Article  Google Scholar 

  5. Al-Ismail, F.S.: DC microgrid planning, operation, and control: a comprehensive review IEEE. Access. 9(36154), 36172 (2021)

    Google Scholar 

  6. Zhao, X., Li, Y.W., Tian, H.: Energy management strategy of multiple supercapacitors in a DC microgrid using adaptive virtual impedance. IEEE J. Emerg. Sel. Topics Power Electron. 4(4), 1174–1185 (2016)

    Article  Google Scholar 

  7. Kim, H.-J., Sang-Woo, K., Gab-Su, S.: Large-signal stability analysis of dc power system with shunt active damper. IEEE Trans. Ind. Elec. 63(10), 6270–6280 (2016)

    Article  Google Scholar 

  8. Ahmed, M., Lasantha, M., Arash, V.: Stability and control aspects of microgrid architectures-a comprehensive review. IEEE Access 8, 144730–144766 (2020)

    Article  Google Scholar 

  9. Riccobono, A., Santi, E.: Comprehensive review of stability criteria for DC power distribution systems. IEEE Trans. Ind. Appl. 50(5), 3525–3535 (2014)

    Article  Google Scholar 

  10. Emadi, A., Khaligh, A., Rivetta, C.H.: Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans. Veh. Technol. 55(4), 1112–1125 (2006)

    Article  Google Scholar 

  11. Liu, S., Su, P., Zhang, L.: A virtual negative inductor stabilizing strategy for DC microgrid with constant power loads. IEEE Access. 6, 59728–59741 (2018)

    Article  Google Scholar 

  12. Cespedes, M., Lei, X., Jian, S.: Constant-power Load system stabilization by passive dam**. IEEE Trans. Power Electron. 26(7), 1832–1836 (2011)

    Article  Google Scholar 

  13. Wu, M., Dylan Dah-Chuan, L.U.: Active stabilization methods of electric power systems with constant power loads: a review. J Mod Power Syst Clean Energy 2(3), 233–243 (2014)

    Article  Google Scholar 

  14. Magne, P., Babak, Nahid-Mobarakeh., Pierfederici, S.: Dynamic consideration of DC microgrids with constant power loads and active dam** system a design method for fault-tolerant stabilizing System. J. Emerg. Sel. Topics Power Electron (2014). https://doi.org/10.1109/JESTPE.2014.2305979

    Article  Google Scholar 

  15. Lu, X.N., Sun, K., Josep, M., Guerrero.: Stability enhancement based on virtual impedance for DC microgrids with constant power loads. IEEE Trans. Smart Grid. 6(6), 2770–2783 (2015)

    Article  Google Scholar 

  16. Magne, P.: Large-signal stabilization of a DC-link supplying a constant power load using a virtual capacitor: Impact on the domain of attraction. IEEE Trans. Ind. Appl. 48(3), 878–887 (2012)

    Article  Google Scholar 

  17. Lee, W.J., Sul, S.K.: DC-link voltage stabilization for reduced DC-link capacitor inverter. IEEE Trans. Ind. Appl. 50(1), 404–414 (2014)

    Article  Google Scholar 

  18. Zhang, X., Ruan, X., Kim, et al.: Adaptive active capacitor converter for improving stability of cascaded DC power supply system. IEEE Trans. Power Electron. 28(4), 1807–1816 (2013)

    Article  Google Scholar 

  19. Rahimi, A.M., Emadi, A.: Active dam** in DC/DC power electronic converters: A novel method to overcome the problems of constant power loads. IEEE Trans. Ind. Elec. 56(5), 1428–1439 (2009)

    Article  Google Scholar 

  20. Zhao, Y., Wei, Q., Ha, D.: A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Trans. Ind App. 50(2), 1448–1458 (2014)

    Article  Google Scholar 

  21. Hossain, E., Perez, R., Padmanaban, S.: Sliding mode controller and lyapunov redesign controller to improve microgrid stability: a comparative analysis with CPL power variation. Energies 10(12), 1959 (2017)

    Article  Google Scholar 

  22. He, W., Mohammad, M., Namazi, Hamid, R., Koofigar.: Stabilization of DC–DC buck converter with unknown constant power load via passivity-based control plus proportion-integration. IET Power Electron. 14(16), 2597–2609 (2021)

    Article  Google Scholar 

  23. Sira-Ramirez, H., Perez-Moreno, R.A., Ortega, R.: Passivity-based controllers for the stabilization of Dc-to-Dc power converters. Automatica (Oxford). 33(4), 499–513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kwasinski, A., Onwuchekwa, C.N.: Dynamic behavior and stabilization of DC Microgrids with instantaneous constant-power loads. IEEE Trans. Power Electron. 26(3), 822–834 (2011)

    Article  Google Scholar 

  25. Son, YIk., Kim, I Hyuk: Complementary PID controller to passivity-based nonlinear control of Boost converters with inductor resistance. IEEE Trans. Control Syst Technol. 20(3), 826–834 (2012)

    Article  Google Scholar 

  26. Zeng, J.-W., Zhang, Z., Qiao, W.: An interconnection and dam** assignment passivity-based controller for a DC-DC Boost converter with a constant power load. IEEE Trans. Ind. Appl. 50(4), 2314–2322 (2014)

    Article  Google Scholar 

  27. Gil-Gonzalez, W., Montoya, O., A. Herrera-Orozco.2020 Adaptive IDA-PBC applied to on-board Boost converter supplying a constant power load. IEEE Andescon. 1–5

  28. Hassan, Mustafa, A., Li, E-p., Li, X.: Adaptive passivity-based control of DC-DC buck power converter with constant power load in DC microgrid systems. IEEE J. Emerg. Sel. Topics Power Electron. 7(3), 2029–2040 (2019)

    Article  Google Scholar 

  29. Hassan, M., Su, C.-L., Chen, F.-Z.: Adaptive passivity-based control of a DC-DC boost power converter supplying constant power and constant voltage loads. IEEE Trans. Ind. Elec. 69(6), 6204–6214 (2022)

    Article  Google Scholar 

Download references

Funding

Natural Science Foundation of Shandong Province, ZR2018MEE037, Yubin Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubin Wang.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**an, Q., Wang, Y., Wang, F. et al. Hybrid passivity-based control for stability and robustness enhancement in DC microgrids with constant power loads. J. Power Electron. 23, 296–307 (2023). https://doi.org/10.1007/s43236-022-00529-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00529-4

Keywords

Navigation