Log in

Upper Neogene climate change in northern Africa based on chemical weathering indices and clay mineralogy: a case study of southeastern Tunisia (Gulf of Gabès)

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The Upper Neogene period is considered one of the most significant episodes of environmental shift in Mediterranean history, which has been recorded and documented in every region bordering this basin. In southeastern Tunisia, the Gulf of Gabes witnessed a wide span of climate change during this period. The main objective of the present study is to assess climatic variations, during the Neogene, in the form of a geochemical signature preserved in the siliciclastic facies of the lower part of the Segui formation and Ouedhref sands. Calculations of weathering proxies from chemical composition and detailed mineralogical study of these sediments revealed that the lower part of the Segui formation had been deposited in contrasted climatic conditions with a tendency to aridity which is proved by the low values of the Chemical Index of Alteration (CIA), the low degree of elements depletion calculated for each element separately and the abundance of smectites and illites. However, weathering proxies and kaolinite abundance in clay samples from Ouedhref deposits indicate high weathering intensity within a warm and humid climatic condition. The evidence of moisture during the deposition of Ouedhref sediments is also proven by sedimentary structures and the fossils collected from the field. The source area of these sediments could be from low Cretaceous siliciclastic sediments (Bouhedma and Sidi Aich formations), which outcrop largely in southwest Tunisia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbes, C., & Zargouni, F. (1986). Anatomie d’un couloir de décrochements: le couloir de Hadifa (Chaîne Nord des Chotts-Tunisie). Revue des Sciences de la Terre, 4.

  • Abbes, C., Ben Ouezdou, H., Louhaichi, M. L., Mamou, A., & Lassoued, S. (1994). Notice explicative de la carte géologique de la Tunisie à 1/100.000 El Hamma.

  • Ahmadi, R., Mercier, E., & Ouali, J. (2013). Growth-strata geometry in fault-propagation folds: A case study from the Gafsa basin, southern Tunisian Atlas. Swiss Journal of Geosciences, 106(1), 91–107. https://doi.org/10.1007/s00015-013-0122-z

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., & Verma, S. P. (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 177(1–2), 115–129. https://doi.org/10.1016/j.sedgeo.2005.02.004

    Article  CAS  Google Scholar 

  • Awasthi, N. (2017). Provenance and paleo–weathering of Tertiary accretionary prism–forearc sedimentary deposits of the Andaman Archipelago, India. Journal of Asian Earth Sciences, 150, 45–62. https://doi.org/10.1016/j.jseaes.2017.10.005

    Article  Google Scholar 

  • Bäumler, R., & Zech, W. (2000). Quaternary paleosols, tephra deposits and landscape history in South Kamchatka, Russia. Catena, 41(1–3), 199–215. https://doi.org/10.1016/S0341-8162(00)00100-4

    Article  Google Scholar 

  • Bédir, M., Houatmia, F., Khomsi, S., & Souei, A. (2021). Seismic and sequence stratigraphy contributions to oligo-miocene deep aquifer characterization in the Tunisian Sahel Foreland Basin (North Africa). Arabian Journal of Geosciences, 14, 1–23.

    Article  Google Scholar 

  • Ben Ouezdou, H. (1984). Stratigraphy of Quaternary continental deposits around the Gulf of Gabes (Southern Tunisia). Comptes-rendus des séances de l’Académie des sciences, Mécaniquephysique, chimie, sciences de l’univers, sciences de la terre. Série, II, 299(19), 1351–1354.

    Google Scholar 

  • Ben Salem, H. (1992). Contribution à la connaissance de la géologie du Cap Bon: Stratigraphie, tectonique et sédimentologie. Thèse de 3ème cycle, Université de Tunis 2, Faculté des Sciences de Tunis.

  • Ben Ayed, N. (1993). Évolution tectonique de l’avantpays de la chaîne alpine de Tunisie du début du Mésozoïque à l’Actuel, Ann. Mines Geol., Editions du Serv. Géol. Tunisia, 32.

  • Bird, M. I., & Chivas, A. R. (1989). Stable-isotope geochronology of the Australian regolith. Geochimica Et Cosmochimica Acta, 53(12), 3239–3256.

    Article  CAS  Google Scholar 

  • Bouabid, R., Badraoui, M., Bloom, P. R., & Daniane, M. (1996). The nature of smectites and associated interstratified minerals in soils of the Gharb plain of Morocco. European Journal of Soil Science, 47(2), 165–174.

    Article  CAS  Google Scholar 

  • Bouaziz, S., Barrier, E., Soussi, M., Turki, M. M., & Zouari, H. (2002). Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics, 357(1–4), 227–253. https://doi.org/10.1016/S0040-1951(02)00370-0

    Article  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  • Burollet, P. F. (1956). Contribution à l’étude stratigraphique de la Tunisie centrale. Annales des Mines et de la Géologie, 18, 350.

    Google Scholar 

  • Castany, G. (1951). Etude géologique de l'Atlas tunisien oriental. These d'Etat.

  • Castany, G. (1954). Les grands traits structuraux de la Tunisie. Bulletin de la Société Géologique de France, 6(1–3), 151–173.

    Article  Google Scholar 

  • Chamley, H., & Robert, C. (1980). Sédimentation argileuse au Tertiaire supérieur dans le domaine méditerranéen. Géologie Méditerranéenne, 7(1), 25–34.

    Article  Google Scholar 

  • Chamley, H. (1989). Clay Mineralogy. Berlin, Germany: Springer.

    Google Scholar 

  • Chihi, L. (1992). Seismotectonic study in central and southern Tunisia. Tectonophysics, 209(1–4), 175–178. https://doi.org/10.1016/0040-1951(92)90021-W

    Article  Google Scholar 

  • Colleuil, B. (1976). Etude stratigraphique et néotectonique des formations néogènes et quaternaires de la région Nabeul-Hammamet (Cap-Bon, Tunisie). Doctoral dissertation, Université de Nice.

  • Courtois, C., & Chamley, H. (1978). Terres rares et minéraux argileux dans le Crétacé et le Cénozoïque de la marge Atlantique orientale Zargouni, F. (1985). Tectonique de l’Atlas méridional de Tunisie. Évolution géométrique et cinématique des structures en zone de cisaillement, université Louis-Pasteur, Strasbourg.

  • Cox, G. M., Halverson, G. P., Stevenson, R. K., Vokaty, M., Poirier, A., Kunzmann, M., et al. (2016). Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446, 89–99. https://doi.org/10.1016/j.epsl.2016.04.016

    Article  CAS  Google Scholar 

  • DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8(2), 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x

    Article  Google Scholar 

  • Dellisanti, F., Pini, G. A., Tateo, F., & Baudin, F. (2008). The role of tectonic shear strain on the illitization mechanism of mixed-layers illite–smectite. A case study from a fault zone in the Northern Apennines, Italy. International Journal of Earth Sciences, 97, 601–616.

    Article  CAS  Google Scholar 

  • Derbel-Damak, F., & Zaghbib-Turki, D. (2002). Identification des zones biostratigraphiques méditerranéennes dans le Pliocène du Cap-Bon (Tunisie). Geobios, 35(2), 253–264. https://doi.org/10.1016/S0016-6995(02)00021-9

    Article  Google Scholar 

  • Dinis, P. A., Pinto, M. M. C., Garzanti, E., & Rocha, F. T. (2019). Detrital record of the denudation of volcanic islands under sub-tropical climate (Cape Verde). Geochemistry, 79(2), 235–246. https://doi.org/10.1016/j.earscirev.2019.103039

    Article  CAS  Google Scholar 

  • Dlala, M. (1992). Seismotectonic study in northern Tunisia. Tectonophysics, 209(1–4), 171–174. https://doi.org/10.1016/0040-1951(92)90020-7

    Article  Google Scholar 

  • Dowsett, H. J., & Cronin, T. M. (1990). High eustatic sea level during the middle Pliocene: Evidence from the southeastern US Atlantic Coastal Plain. Geology, 18(5), 435–438.

    Article  Google Scholar 

  • Dowsett, H. J., Cronin, T. M., Poore, R. Z., Thompson, R. S., Whatley, R. C., & Wood, A. M. (1992). Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the Pliocene. Science, 258(5085), 1133–1135. https://doi.org/10.1126/science.258.5085.1133

    Article  CAS  Google Scholar 

  • Dowsett, H. J., & Poore, R. Z. (1991). Pliocene sea surface temperatures of the North Atlantic Ocean at 3.0 Ma. Quaternary Science Reviews, 10(2–3), 189–204. https://doi.org/10.1016/0277-3791(91)90018-P

    Article  Google Scholar 

  • Ekoa Bessa, A. Z., Ndjigui, P. D., Fuh, G. C., Armstrong-Altrin, J. S., & Betsi, T. B. (2021). Mineralogy and geochemistry of the Ossa Lake Complex sediments, Southern Cameroon: Implications for paleo weathering and provenance. Arabian Journal of Geosciences, 14, 1–17. https://doi.org/10.1007/s41748-020-00167-5

    Article  Google Scholar 

  • Fauquette, S., & Bertini, A. (2003). Quantification of the northern Italy Pliocene climate from pollen data: Evidence for a very peculiar climate pattern. Boreas, 32(2), 361–369. https://doi.org/10.1111/j.1502-3885.2003.tb01090.x

    Article  Google Scholar 

  • Fauquette, S., Guiot, J., & Suc, J. P. (1998). A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(1–2), 183–201. https://doi.org/10.1016/S0031-0182(98)00083-2

    Article  Google Scholar 

  • Fauquette, S., Suc, J. P., Guiot, J., Diniz, F., Feddi, N., Zheng, Z., et al. (1999). Climate and biomes in the West Mediterranean area during the Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1–2), 15–36. https://doi.org/10.1016/S0031-0182(99)00031-0

    Article  Google Scholar 

  • Fauquette, S., Suc, J. P., Jiménez-Moreno, G., Micheels, A., Jost, A., et al. (2007). Latitudinal climatic gradients in the Western European and Mediterranean regions from the Mid-Miocene (c. 15 Ma) to the Mid-Pliocene (c. 3.5 Ma) as quantified from pollen data.

    Google Scholar 

  • Fedo, C. M., Wayne Nesbitt, H., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo weathering conditions and provenance. Geology, 23(10), 921–924. https://doi.org/10.1130/0091-7613(1995)023%3C0921:UTEOPM%3E2.3.CO;2

    Article  CAS  Google Scholar 

  • Fontes, J. C. (1976). Les isotopes du milieu dans les eaux naturelles. La Houille Blanche, 3–4, 205–221.

    Article  Google Scholar 

  • Gallala, W., Gaied, M. E., & Montacer, M. (2009). Detrital mode, mineralogy and geochemistry of the Sidi Aïch Formation (Early Cretaceous) in central and southwestern Tunisia: Implications for provenance, tectonic setting and paleoenvironment. Journal of African Earth Sciences, 53(4–5), 159–170. https://doi.org/10.1016/j.jafrearsci.2009.01.002

    Article  CAS  Google Scholar 

  • Gaillardet, J., Dupré, B., & Allègre, C. J. (1999). Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 63, 4037–4051.

    Article  Google Scholar 

  • Garzanti, E., Andó, S., France-Lanord, C., Censi, P., Vignola, P., Gal, V., & Lupker, M. (2011). Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 302(1–2), 107–120. https://doi.org/10.1016/j.epsl.2010.11.0430

    Article  CAS  Google Scholar 

  • Garzanti, E., Andò, S., France-Lanord, C., Vezzoli, G., Censi, P., Galy, V., & Najman, Y. (2010). Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299(3–4), 368–381. https://doi.org/10.1016/j.epsl.2010.09.017

    Article  CAS  Google Scholar 

  • Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., & Villa, I. M. (2014). Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology, 366, 61–74. https://doi.org/10.1016/j.chemgeo.2013.12.016

    Article  CAS  Google Scholar 

  • Garzanti, E., Padoan, M., Andò, S., Resentini, A., Vezzoli, G., & Lustrino, M. (2013a). Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121(6), 547–580.

    Article  CAS  Google Scholar 

  • Garzanti, E., Vermeesch, P., Andò, S., Vezzoli, G., Valagussa, M., Allen, K., et al. (2013b). Provenance and recycling of Arabian desert sand. Earth-Science Reviews, 120, 1–19.

    Article  CAS  Google Scholar 

  • Garzanti, E., Vermeesch, P., Padoan, M., Resentini, A., Vezzoli, G., & Ando, S. (2014). Provenance of passive-margin sand (Southern Africa). The Journal of Geology, 122(1), 17–42.

    Article  CAS  Google Scholar 

  • Garzanti, E., Vermeesch, P., Vezzoli, G., Andò, S., Botti, E., Limonta, M., et al. (2019). Congo River sand and the equatorial quartz factory. Earth-Science Reviews, 197, 102918. https://doi.org/10.1016/j.earscirev.2019.102918

    Article  CAS  Google Scholar 

  • Genise, J. F., Bellosi, E. S., Cantil, L. F., González, M. G., & Puerta, P. (2022). Middle Miocene Climate Transition as reflected by changes in ichnofacies and palaeosols from Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 594, 110932. https://doi.org/10.1016/j.palaeo.2022.110932

    Article  Google Scholar 

  • Gharbi, M. (2013). Relationship between the southern Atlas foreland and the eastern margin of Tunisia (Chotts-Gulf of Gabes): tectono-sedimentary, fault kinematics and balanced cross section approaches. Doctoral dissertation, Aix-Marseille.

  • Gharbi, M., Masrouhi, A., Espurt, N., Bellier, O., Amari, E. A., Youssef, M. B., & Ghanmi, M. (2013). New tectono-sedimentary evidences for Aptian to Santonian extension of the Cretaceous rifting in the Northern Chotts range (Southern Tunisia). Journal of African Earth Sciences, 79, 58–73. https://doi.org/10.1016/j.jafrearsci.2012.09.017

    Article  Google Scholar 

  • Hall, M. L., Steele, A. L., Bernard, B., Mothes, P. A., Vallejo, S. X., Douillet, G. A., et al. (2015). Sequential plug formation, disintegration by Vulcanian explosions, and the generation of granular Pyroclastic Density Currents at Tungurahua volcano (2013–2014), Ecuador. Journal of Volcanology and Geothermal Research, 306, 90–103. https://doi.org/10.1016/j.jvolgeores.2015.09.009

    Article  CAS  Google Scholar 

  • Harnois, L. (1988). The CIW index: A new chemical index of weathering. SedG, 55(3), 319–322.

    CAS  Google Scholar 

  • Hessler, A. M., Zhang, J., Covault, J., & Ambrose, W. (2017). Continental weathering coupled with Paleogene climate changes in North America. Geology, 45(10), 911–914. https://doi.org/10.1130/G39245.1

    Article  Google Scholar 

  • Lasabuda, A., Laberg, J. S., Knutsen, S. M., & Høgseth, G. (2018). Early to middle Cenozoic paleoenvironment and erosion estimates of the southwestern Barents Sea: Insights from a regional mass-balance approach. Marine and Petroleum Geology, 96, 501–521. https://doi.org/10.1016/j.marpetgeo.2018.05.039

    Article  Google Scholar 

  • Mannaï-Tayech, B. (2006). Les séries silicoclastiques miocènes du Nord-Est au Sud-Ouest de la Tunisie: Une mise au point. Geobios, 39(1), 71–84. https://doi.org/10.1016/j.geobios.2004.08.003

    Article  Google Scholar 

  • Mannaï-Tayech, B. (2009). The lithostratigraphy of the Miocene series from Tunisia, revisited. Journal of African Earth Sciences, 54(3–4), 53–61. https://doi.org/10.1016/j.jafrearsci.2009.02.003

    Article  Google Scholar 

  • Mannan, A. (2002). Stratigraphic evolution and geochemistry of the Neogene Surma Group, Surma basin, Sylhet, Bangladesh. Academic dissertation, University of Oulu.

  • Maynard, J. B. (1992). Chemistry of modern soils as a guide to interpreting Precambrian paleosols. The Journal of Geology, 100(3), 279–289.

    Article  Google Scholar 

  • Montenat, C., Bizon, G., Bizon, J. J., Carbonnel, G., Muller, C., & De Reneville, P. (1976). Continuité ou discontinuité de sémentation marine mio-pliocène en Méditerranée occidentale. L’example du bassin de vera (Espagne méridionale). Revue de l’Institut Français du Pétrole, 31(4), 613–664. https://doi.org/10.2516/ogst:1976021

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. J. (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals p. 332.

  • Mosbahi, M., Khlifi, M., Jamoussi, F., & Tlili, A. (2017). Valorization of Coniacian-middle Campanian clay minerals of the Meknassy-Mezzouna region (centerwestern Tunisia) in the clinker manufacturing. Arabian Journal of Geosciences, 10, 1–18.

    Article  CAS  Google Scholar 

  • Nesbitt, H., & Young, G. M. (1982). Early Proterozoic climates and plate motions were inferred from the major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et cosmochimica acta, 48(7), 1523–1534.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2), 129–147.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., Young, G. M., McLennan, S. M., & Keays, R. R. (1996). Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. The journal of geology, 104(5), 525–542.

    Article  CAS  Google Scholar 

  • Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 107(6), 501–504. https://doi.org/10.1017/S0016756800058581

    Article  CAS  Google Scholar 

  • Paul, A. Q., Dar, S. A., Singh, B. P., Kumar, H., & Ahmad, M. (2023). Geochemistry of recent sediments of the Kurheri basin, Son River, Madhya Pradesh, Central India: implications for source area weathering, sediment provenance, maturity, and sorting. International Journal of Earth Sciences, 112, 1803–1821. https://doi.org/10.1007/s00531-023-02317-2

    Article  CAS  Google Scholar 

  • Perri, F. (2020). Chemical weathering of crystalline rocks in contrasting climatic conditions using geochemical proxies: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 556, 109873.

    Article  Google Scholar 

  • Rouchy, J. M., Orszag-Sperber, F., Blanc-Valleron, M. M., Pierre, C., Rivière, M., Combourieu-Nebout, N., & Panayides, I. (2001). Paleoenvironmental changes at the Messinian-Pliocene boundary in the eastern Mediterranean (southern Cyprus basins): Significance of the Messinian Lago-Mare. Sedimentary Geology, 145(1–2), 93–117.

    Article  CAS  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and KO/Na O ratio. The Journal of Geology, 94(5), 635–650.

    Article  CAS  Google Scholar 

  • Rudnick, R., & Gao, S. (2003). The role of lower crustal recycling in continent formation. Geochimica Et Cosmochimica Acta Supplement, 67(18), 403.

    Google Scholar 

  • Ryan, W. B. F. (1974). A paleomagnetic assignment to Neogene stage boundaries and the development of isochronous datum planes between the Mediterranean, the Pacific and Indian oceans in order to investigate the response of the world ocean of the Mediterranean “salinity crisis.” Rivista Italiana di Paleontologia e Stratigraphia, 80, 631–638.

    Google Scholar 

  • Saha, S., Reza, A. H. M. S., & Roy, M. K. (2020). Illite crystallinity index an indicator of physical weathering of the sediments of the Tista River, Rangpur, Bangladesh. Int J Adv Geosci, 8(1), 27–32.

    Article  Google Scholar 

  • Sato, T., Murakami, T., & Watanabe, T. (1996). Change in layer charge of smectites and smectite layers in illite/smectite during diagenetic alteration. Clays and Clay Minerals, 44, 460–469.

    Article  CAS  Google Scholar 

  • Schatz, A. K., Qi, Y., Siebel, W., Wu, J., & Zöller, L. (2015). Tracking potential source areas of Central European loess: Examples from Tokaj (HU), Nussloch (D) and Grub (AT). Open Geosciences, 7(1), 20150048. https://doi.org/10.1515/geo-2015-0048

    Article  Google Scholar 

  • Senut, B., Pickford, M., & Ségalen, L. (2009). Neogene desertification of Africa. Comptes Rendus Geoscience, 341(8–9), 591–602.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of geophysics, 33(2), 241–265.

    Article  Google Scholar 

  • Temani, R., & Gaaloul, N. (2007). Les paléopeuplements du Messinien et du Pliocène du golfe de Hammamet: Intérêt paléoécologique et événementiel. Revue Méditerranéenne de l’Environnement, 2, 130–142.

    Google Scholar 

  • Thiry, M. (2000). Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin. Earth-Science Reviews, 49(1–4), 201–221. https://doi.org/10.1016/S0012-8252(99)00054-9

    Article  CAS  Google Scholar 

  • Tlig, S., Er-raioui, L., Aissa, L. B., Alouani, R., & Tagorti, M. A. (1991). Tectogenèses alpine et atlasique: deux événements distincts dans l’histoire géologique de la Tunisie. Corrélation avec les événements clés en Méditerranée. Comptes Rendus de l’Académie des Sciences Série 2, 312(3), 295–301.

    Google Scholar 

  • Trájer, A. J. (2023). Characterization of the palaeoenvironmental conditions in the Pannonian Basin during the last 34 mys related to the formation of haematitic and kaolinitic sedimentary rocks. International Journal of Earth Sciences, 112(5), 1361–1387. https://doi.org/10.1007/s00531-023-02302-9

    Article  CAS  Google Scholar 

  • Van Vliet-Lanoë, B., Vandenberghe, N., Laurent, M., Laignel, B., Lauriat-Rage, A., Louwye, S., Mansy, J. L., Mercier, D., Hallégouët, B., Laga, P., Laquement, F., Meilliez, F., Michel, Y., Moguedet, G., & Vidier, J. P. (2002). Palaeogeographic evolution of northwestern Europe during the Upper Cenozoic. Geodiversitas, 24(3), 511–541.

    Google Scholar 

  • von Eynatten, H., Tolosana-Delgado, R., & Karius, V. (2012). Sediment generation in modern glacial settings: Grain-size and source-rock control on sediment composition. Sedimentary Geology, 280, 80–92. https://doi.org/10.1016/j.sedgeo.2012.03.008

    Article  CAS  Google Scholar 

  • von Eynatten, H., Tolosana-Delgado, R., Karius, V., Bachman, K., & Caracciolo, L. (2016). Sediment generation in humid Mediterranean setting: Grain-size and source-rock control on sediment geochemistry and mineralogy. Sedimentary Geology, 336, 68–80. https://doi.org/10.1016/j.sedgeo.2015.10.008

    Article  Google Scholar 

  • Wang, P., Du, Y., Yu, W., Algeo, T. J., Zhou, Q., Xu, Y., Qi, L., Yuan, L., & Pan, W. (2020). The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth’s history. Earth-Science Reviews, 201, 103032. https://doi.org/10.1016/j.earscirev.2019.103032

    Article  CAS  Google Scholar 

  • Weibel, R., Nielsen, M. T., Therkelsen, J., Jakobsen, F. C., Bjerager, M., Mørk, F., Mathiesen, A., Hovikoski, J., Pedersen, S. S., Johannessen, P. N., & Dybkjær, K. (2020). Illite distribution and morphology explaining basinal variations in reservoir properties of Upper Jurassic sandstones, Danish North Sea. Marine and Petroleum Geology, 116, 104290.

    Article  Google Scholar 

  • Yang, S., Jung, H. S., & Li, C. (2004). Two unique weathering regimes in the Changjiang and Huanghe drainage basins: Geochemical evidence from river sediments. Sedimentary Geology, 164(1–2), 19–34. https://doi.org/10.1016/j.sedgeo.2003.08.001

    Article  CAS  Google Scholar 

  • Zargouni, F. (1984). Style et chronologie des déformations des structures de l’Atlas tunisien meridional. Évolution récente de l’accident Sud-atlasique. Comptes-Rendus des Séances de l’Académie des Sciences Série 2, 299(2), 71–76.

    Google Scholar 

  • Zargouni, F., Rabia, M. C., & Abbes, C. (1985). Rôle des couloirs de cisaillement de Gafsa et de Negrine-Tozeur dans la structuration du faisceau des plis des Chott, éléments de l’accident sud-atlasique. Comptes Rendus de l’Académie des Sciences Série 2, 301(11), 831–834.

    Google Scholar 

Download references

Acknowledgements

The authors thank all the research unity staff of the Applied Geophysics of Materials and Minerals (URGAMM), the research laboratory 3G at the Faculty of Sciences of Gabes, and the National Office of Mines (ONM; Tunisia), where the analyses were carried out and the Higher Institute of Water Sciences and Techniques of Gabes.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study and conception of the manuscript. F.H. made the analytical part of the manuscript. M.O. helped F.H. in the field study, sample collections, and sedimentary environments understanding. T.H. and W.G. revised the manuscript, especially the interpretation, and helped F.H. in clay mineralogy and its relationship with climate variations. M.H.I. and A.A. organized the research strategy and revised figures.

Corresponding author

Correspondence to Faten Hallek.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Maria Virginia Alves Martins.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Supplementary file2 (DOCX 738 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallek, F., Ouaja, M., Hallek, T. et al. Upper Neogene climate change in northern Africa based on chemical weathering indices and clay mineralogy: a case study of southeastern Tunisia (Gulf of Gabès). J. Sediment. Environ. 9, 317–336 (2024). https://doi.org/10.1007/s43217-024-00176-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-024-00176-8

Keywords

Navigation