Log in

Suitability of basins in Russia for aquifer CO2 storage: evaluation strategy

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

A preliminary conceptual approach is suggested to assess the suitability of onshore deep saline aquifers in major sedimentary basins of Russia for carbon capture and sequestration (CCS). The assessment is based on several regional and subregional criteria developed especially concerning the existing international and national legislation on the disposal of CO2, plant effluents, and toxic wastes, and to the construction and monitoring of underground gas storage sites. Potential long-term storage of CO2 in deep saline aquifers is evaluated according to hydrogeological, hydrodynamic, tectonic, lithological, geothermal, and environmental conditions. Russia’s sedimentary basins and aquifers are classified as highly, moderately, poorly suitable, or unsuitable for CO2 disposal. As a result, 42 highly suitable, 17 moderately suitable, and 32 poorly suitable aquifers have been identified on the regional scale. The best prospects are expected from basins in the East European, East Siberian, and West Siberian hydrogeological provinces. The artesian basins of Azov-Kuban, East-Fore-Caucasus, Ergen, East-Donets, Kama-Vyatka, and Emben in the East European province, the Pechora basin in the Pechora-Barents Sea plate, and the Taz-Pur and Irtysh-Ob basins in West Siberia show high suitability for CCS projects. East Siberia has the Pyasina-Yenisei and Balakhna basins in the Arctic sector and the Putorana, Lower Tunguska, Katanga, and Angara basins farther in the south. This is the case of the Moscow artesian basin where 16 traps have been revealed, with a primary storage capacity of 150.6 Gt for dissolved CO2 and 13.4 Gt for supercritical CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data are presented in tables and plots.

References

  • Abuov, Y., Seisenbayev, N., & Lee, W. (2020). CO2 storage potential in sedimentary basins of Kazakhstan. International Journal of Greenhouse Gas Control, 103, 103186.

    Article  CAS  Google Scholar 

  • Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy, 208, 1389–1419. https://doi.org/10.1016/j.apenergy.2017.09.015

    Article  CAS  Google Scholar 

  • Bach, W., Crane, A. J., Berger, A. L., & Longhetto, A. (1983). Carbon dioxide: Current views and developments in energy/climate research. In: Proceedings of 2nd course of the international school of climatology, Ettore Majorana Centre for Scientific Culture, Erice, Italy, July 16–26, 1982. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster.

  • Bachu, S. (2015). Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 40, 188–202. https://doi.org/10.1016/j.ijggc.2015.01.007

    Article  CAS  Google Scholar 

  • Bachu, S., & Adams, J. J. (2003). Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management, 44, 3151–3175.

    Article  CAS  Google Scholar 

  • Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P., & Mathiassen, O. M. (2007). CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1, 430–443. https://doi.org/10.1016/S1750-5836(07)00086-2

    Article  CAS  Google Scholar 

  • Bogomolov, G. V., Mukhin, Yu. V., Balakirev, Yu. A., Grebenchuk, A. V., & Komarnitsky, A. V. (1975). Hydrodynamics and geothermics of oil fields. Naukai Tekhnika.

    Google Scholar 

  • Borevskaya, A. V., Gavrilov, I. T., Goldberg, V. M., Krivosheev, V. P., Tarasova, N. V., & Totov, N. A. (1976). Hydrogeological research for deep aquifer disposal of industrial effluent. Methodological guidelines. Nedra.

    Google Scholar 

  • BP Statistical Review of World Energy. (2021). 70th edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf

  • Farrakhov, E. G. (2006). Geological and geophysical surveys in the Moscow Basin: Synthesis of previous results and future challenges. ROSGEO.

    Google Scholar 

  • Federal Law. (1995). Federal law on publicly protected land of 14.03.1995 N 33-FZ (modified as of 26.07. 2019). Moscow.

  • Flett, M., Brantjes, J., Gurton, R., McKenna, J., Tankersley, T., & Trupp, M. (2009). Subsurface development of CO2 disposal for the Gorgon Project. Energy Procedia, 1, 3031–3038.

    Article  CAS  Google Scholar 

  • Gatalsky, M. A. (1954). Ground waters and gases in Paleozoic sediments of the Russian Platform. In: Transactions, all-union research institute for petroleum and geological prospecting (VNIGRI), Issue 9. VNIGRI, Leningrad.

  • Gavrilov, V. P., Dvoretsky, P. I., Dunaev, V. F., Ponomarev, V. A., & Rudnev, A. N. (2000). Geology and petroleum potential of the Moscow and Mezen Basins. Gazprom.

    Google Scholar 

  • Govindan, R., Babaei, M., Korre, A., Shi, J.-Q., Durucana, S., Norden, B., & Kempka, T. (2014). CO2 storage uncertainty and risk assessment for the post-closure period at the Ketzin pilot site in Germany. Energy Procedia, 63, 4758–4765. https://doi.org/10.1016/j.egypro.2014.11.506

    Article  CAS  Google Scholar 

  • Holloway, S., & Savage, D. (1993). The potential for aquifer disposal of carbon dioxide in the UK. Energy Conversion Management, 34, 925–932. https://doi.org/10.1016/0196-8904(93)90038-C

    Article  CAS  Google Scholar 

  • ISO 27916. (2019). Carbon dioxide capture, transportation and geological storage. Carbon dioxide storage using enhanced oil recovery (CO2-EOR). Switzerland.

  • Kartsev, A. A., Vagin, S. B., & Baskov, E. A. (1969). Paleohydrogeology. Nedra.

    Google Scholar 

  • Khan, S. A. (2010). Projects of carbon dioxide sequestration and storage: Review of world practices. Georesursy, 4(36), 55–62.

    Google Scholar 

  • Khanin, A. A. (1965). Fundamentals of Reservoir Rock Studies. Nedra.

    Google Scholar 

  • Kleshchev, K. A., & Varlamov, A. I. (2012). Map of petroleum potential of Russia and Former Soviet countries. VNIGNI.

    Google Scholar 

  • Kuzmenko, Yu. T. (1988). Tectonic map of the Central East European Craton. Scale 1:1 000 000. Centrgeologiya.

    Google Scholar 

  • Li, L., Zhao, N., Wei, W., & Sun, Y. (2013). A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel, 108, 112–130. https://doi.org/10.1016/j.fuel.2011.08.022

    Article  CAS  Google Scholar 

  • Lu, P., Liu, W., Gao, C., Zhao, J., & Bai, Y. (2021). Evaluation of carbon dioxide storage in the deep saline layer of the Ordovician Majiagou Formation in the Ordos Basin. IOP Conference Series: Earth and Environmental Science, 675, 012058.

    Article  Google Scholar 

  • Morozov, A. F. (2000). Tectonic Map of Russia. Scale 1:5000,000. Ministry of Natural Resources, Geokart, IMGRE.

    Google Scholar 

  • Novikov, D. A., Dultsev, F. F., Fomina, Y. V., Maximova, A. A., Yurchik, I. I., Nikitenkov, A. N., Derkachev, A. S., Knyazev, A. G., & Chernykh, A. V. (2023a). First experience in zonal forecast over the Moscow Artesian Basin for implementation of CCS projects. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 334(10), 119–139.

    Article  Google Scholar 

  • Novikov, D. A., Dultsev, F. F., Yurchik, I. I., Sadykova, Ya. V., Derkachev, A. S., Chernykh, A. V., Maksimova, A. A., Golovin, S. V., Glavnov, N. G., & Zhukovskaya, E. A. (2022). Regional-level evaluation of CO2 disposal potential in the territory of the Russian Federation. Neftyanoye Khozyaistvo, 3, 36–42. https://doi.org/10.24887/0028-2448-2022-3-36-42

    Article  CAS  Google Scholar 

  • Novikov, D. A., YaV, F., Yurchik, I. I., Chernykh, A. V., Dultsev, F. F., & Golovin, S. V. (2023b). Optimal set of criteria for the zonal forecast of the potential for carbon dioxide capture and storage in geological formations. Ecology and Industry of Russia, 27(4), 44–49.

    Article  Google Scholar 

  • Ostrovsky, M. I. (1974). Tectonic framework of the Central Russian platform: Implications for petroleum potential and exploration prospects. VNIGNI.

    Google Scholar 

  • Popova, E. N. (2022). The State of the Subsoil in the Central Province of the Russian Federation for 2021. News Letter 27. Gidrospecgeologiya.

    Google Scholar 

  • Publicly Protected Areas of the Russian Federation. GIS-Atlas. (2023). VSEGEI, St. Petersburg. Retrieved from http://www.oopt.aari.ru/oopt_map.

  • Rules and Regulations. (2012). Working document SP 123.13330.2012 (SNiP 34-02-99) underground storages of natural gas, oil and processing product. Minregion Rossii.

    Google Scholar 

  • Rules and Regulations. (2017). Working document SP 127.13330.2017 (SNiP 2.01.28-85). Landfills for the disposal and burial of toxic industrial wastes basic provisions on design. Standartinform.

    Google Scholar 

  • Shukla, R., Ranjith, P., Haque, A., & Choi, X. (2010). A review of studies on CO2 sequestration and caprock integrity. Fuel, 89(10), 2651–2664. https://doi.org/10.1016/j.fuel.2010.05.012

    Article  CAS  Google Scholar 

  • Smirnov, E. O. (2010). Formation of reservoir and seal properties in clastic sediments and evaluation of suitability for underground storage of natural gas in aquifers. Author’s Abstract, Candidate Thesis (Geology & Mineralogy). OOO Gazprom VNIIGAZ, Moscow.

  • Smirnova, N. I., & Evseeva, V. I. (2004). Mineral resources of the Russian Federation and its continental shelf areas: Geological and hydrogeological aspects. Regional Patterns of groundwater formation and natural water chemistry in operated aquifers within the Moscow Artesian Basin. Final Report. Volumes 1, 2. Centrgeologiya, Moscow.

  • State Standard. (2016). Working document GOST 56598–2015. Resource husbandry. Wastes management. Sites for disposal of industrial wastes. Basic provisions. Standartinform.

    Google Scholar 

  • State Standard. (2019). Working document GOST 57817–2017. Underground gas storages. Design standards. Standartinform.

    Google Scholar 

  • Szizybalski, A., Kollersberger, T., Möller, F., Martens, S., Liebscher, A., & Kühn, M. (2014). Communication supporting the research on CO2 storage at the Ketzin Pilot Site, Germany—A status report after ten years of public outreach. Energy Procedia, 51, 274–280. https://doi.org/10.1016/j.egypro.2014.07.032

    Article  Google Scholar 

  • Tang, Y., Yang, R., & Bian, X. (2014). A review of CO2 sequestration projects and application in China. The Scientific World Journal, 14, 381854. https://doi.org/10.1155/2014/381854

    Article  CAS  Google Scholar 

  • The Active Faults of Eurasia Database (AFEAD). (2023). Retrieved from http://neotec.ginras.ru/index/mapbox/database_map.html

  • USGS (Earthquake Hazards). (2023). Retrieved from https://www.usgs.gov/programs/earthquake-hazards/earthquakes

  • Van der Meer, L. G. H. (1993). The conditions limiting CO2 storage in aquifers. Energy Conversion Management, 34, 959–966. https://doi.org/10.1016/0196-8904(93)90042-9

    Article  Google Scholar 

  • Vartanyan, G. S., & Kochetkov, M. V. (2001). The hydrogeological map of Russia. Scale 1:2 500 000.

  • Wei, N., Li, X., Wang, Y., Dahowski, R. T., Davidson, C. L., & Bromhal, G. S. (2013). A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China. International Journal of Greenhouse Gas Control, 12, 231–246. https://doi.org/10.1016/j.ijggc.2012.10.012

    Article  CAS  Google Scholar 

  • Yoksoulian, L. E., Freiburg, J. T., Butler, S. K., Berger, P. M., & Roy, W. R. (2013). Mineralogical alterations during laboratory-scale carbon sequestration experiments for the Illinois Basin. Energy Procedia, 37, 5601–5611. https://doi.org/10.1016/j.egypro.2013.06.482

    Article  CAS  Google Scholar 

  • Zahid, U., Lim, Y., Jung, J., & Han, C. (2011). CO2 geological storage: A review on present and future prospects. Korean Journal of Chemical Engineering, 28, 674–685. https://doi.org/10.1007/s11814-010-0454-6

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Novosibirsk State University under the Priority 2030 Program and by the Ministry of Science and Higher Education of the Russian Federation under Projects No. FWZZ-2022-0014.

Author information

Authors and Affiliations

Authors

Contributions

DAN and IIY: Conceptualization, methodology, writing—original draft preparation. FFD: Writing—reviewing and editing, visualization. AAM: Software, validation. ASD: Visualization; AVC, FFD, IIY and YVF: Data curation; ANN: Methodology and modeling; DAN and SVG: Project curation.

Corresponding author

Correspondence to Fedor F. Dultsev.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

All authors have read and understood and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that, with minor exceptions, no changes can be made to authorship once the paper is submitted.

Consent to participate

All participants provided informed consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, D.A., Fomina, Y.V., Yurchik, I.I. et al. Suitability of basins in Russia for aquifer CO2 storage: evaluation strategy. J. Sediment. Environ. 9, 375–395 (2024). https://doi.org/10.1007/s43217-024-00165-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-024-00165-x

Keywords

Navigation