Log in

Tb3+-sensitized Yb3+ downshifting emission, host-sensitized Yb3+ quantum-cutting emission, Yb3+ sensitized Tb3+ upconversion emissions, and special thermal quenching mechanism in Tb3+/Yb3+-doped NaY(WO4)2 phosphors

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Tb3+–Yb3+ co-doped NaY(WO4)2 phosphors with intense near-infrared emission and broad band near-ultraviolet absorption were synthesized by a traditional high‐temperature solid‐state method. The luminescence spectra and fluorescence decays of visible and near-infrared emissions were measured to investigate the luminescence mechanisms. It was found that the energy transfer from Tb3+ to Yb3+ cannot result in the quantum-cutting emission but downshifting emission. The luminescence mechanism of the singlet and triplet states (WO4)2− sensitizing Yb3+ were explored and ascribed to quantum-cutting. A two-photon process for the green upconversion emission was verified by analyzing the dependence of the upconversion emission intensity on 980 nm laser operating current. On the analyses of the temperature‐dependent emission spectra and temperature‐dependent fluorescence decay curves, it was revealed that the luminescence thermal quenching of Tb3+ in NaY(WO4)2: Tb3+/Yb3+ phosphor is attributed to crossover process within the temperature range of 303–483 K and can be ascribed to both crossover and nonradiative relaxation processes when the temperature is higher than 513 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Q.Y. Zhang, C.H. Yang, Y.X. Pan, Appl. Phys. Lett. 90, 021107 (2007)

    Article  Google Scholar 

  2. J. Li, J. Zhang, X. Zhang, Z. Hao, Y.S. Luo, J. Alloys Compd. 583, 96–99 (2014)

    Article  CAS  Google Scholar 

  3. X. Zhou, Y. Wang, X. Zhao, L. Li, Z.Q. Wang, Q.X. Li, J. Am. Ceram. 97, 179–184 (2014)

    Article  CAS  Google Scholar 

  4. M.K. Lau, J.H. Hao, Energy Proc. 15, 129–134 (2012)

    Article  CAS  Google Scholar 

  5. Q. Yan, J. Ren, Y. Tong, C.R. Chen, J. Am. Ceram. 96, 1349–1351 (2013)

    Article  CAS  Google Scholar 

  6. W. Zhu, D. Chen, L. Lei, J. Xu, Y.S. Wang, Nanoscale 6, 10500–10504 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. L. Zhao, L. Han, Y. Wang, Opt. Mater. 4, 1456–1464 (2014)

    Article  CAS  Google Scholar 

  8. S.A. Sokolov, R. Roesslhuber, D.M. Zhigunov, N.V. Latukhina, V.Y. Timoshenko, Thin Solid Films 562, 462–466 (2014)

    Article  CAS  Google Scholar 

  9. L.J. Borrero-Gonzalez, L.A.O. Nunes, G.S. Bianchi, F.B.G. Astrath, M.L. Baesso, J. Appl. Phys. 114, 013103 (2013)

    Article  Google Scholar 

  10. Y. Yang, L. Liu, S. Cai, F. Jiao, C. Mi, X.Y. Su, J. Zhang, F. Yu, X.D. Li, Z.Q. Li, J. Lumin. 146, 284–287 (2014)

    Article  CAS  Google Scholar 

  11. P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. den Hertog, J.P.J.M. van der Eerden, A. Meijerink, Phys. Rev. B 71, 14119 (2005)

    Article  Google Scholar 

  12. Q.Y. Zhang, C.H. Yang, Y.X. Pan, Appl. Phys. Lett. 90, 2 (2007)

    Google Scholar 

  13. Q.Y. Zhang, C.H. Yang, Z.H. Jiang, X.H. Ji, Appl. Phys. Lett. 90, 061914 (2007)

    Article  Google Scholar 

  14. X.Y. Huang, Q.Y. Zhang, J. Appl. Phys. 105, 053521–053524 (2009)

    Article  Google Scholar 

  15. C. Gunawan, M. Lim, C.P. Marquis, R. Amal, J. Mater. Chem. B. 2, 2060–2083 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millán, S.A. Vitor, F. Palacio, L.D. Carlos, Nanoscale 4, 4799–4829 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. P. Löw, B. Kim, N. Takama, C. Bergaud, Small 4, 908–914 (2008)

    Article  PubMed  Google Scholar 

  18. P.S. Peijzel, A. Meijerink, Chem. Phys. Lett. 401, 241–245 (2005)

    Article  CAS  Google Scholar 

  19. D. Gao, B.J. Chen, X.Z. Sha, Light Sci. Appl. 13, 1–14 (2024)

    Article  Google Scholar 

  20. D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063–1070 (1954)

    Article  CAS  Google Scholar 

  21. R. Shi, J. Xu, G. Liu, X.J. Zhang, W.J. Zhou, F.J. Pan, Y. Huang, Y. Tao, H.B. Liang, J. Phys. Chem. C 120, 4529–4537 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSFC (National Natural Science Foundation of China, Grant No. 11774042), Fundamental Research Funds for the Central Universities (Grant No. 3132019338), China Postdoctoral Science Foundation (Grant No. 2016M591420), and by the fund of the State Key Laboratory of Catalysis in DICP, under Grant No. N-20-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojiu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Liu, S., Zhang, X. et al. Tb3+-sensitized Yb3+ downshifting emission, host-sensitized Yb3+ quantum-cutting emission, Yb3+ sensitized Tb3+ upconversion emissions, and special thermal quenching mechanism in Tb3+/Yb3+-doped NaY(WO4)2 phosphors. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00404-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00404-x

Keywords

Navigation