Log in

Environmental barrier coatings on SiC without a silicon bond coating: oxidation resistance, failure modes, and future improvements

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Environmental barrier coatings (EBCs) are used to mitigate chemical reactions between SiC ceramic matrix composite (CMC) components and the H2O in combustion gas in turbine hot sections. CMCs are currently temperature-limited by the Si-bond coating, which melts at ~ 1414 °C. This work explores EBCs where the bond coating was removed to achieve higher operating temperatures. Various versions of enhanced roughness SiC were utilized to improve EBC adhesion to the substrates prior to 1 h furnace cycle testing in steam at 1250–1425 °C. The enhanced SiC roughness resulted in short coating lifetimes as the roughness was oxidized away with SiO2 formation. Further, isothermal furnace exposures at 1400–1600 °C showed Yb2Si2O7/Yb2SiO5 EBC microstructural changes, resulting in premature debonding from the substrates. This work provides baseline requirements for the development of both next-generation EBCs and bond coating strategies to overcome the current limitation of the Si-bond coating melting temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. M.A. Alvin, K. Klotz, B. McMordie, D. Zhu, B. Gleeson, B. Warnes, Extreme temperature coatings for future gas turbine engines. J. Eng. Gas Turbines Power 136, 112102 (2014). https://doi.org/10.1115/1.4027186

    Article  CAS  Google Scholar 

  2. R. S. Bunker, Evolution of Turbine Cooling, presented at the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers Digital Collection (2017) doi: https://doi.org/10.1115/GT2017-63205

  3. R.A. Miller, Current status of thermal barrier coatings — An overview. Surf. Coat. Technol. 30(1), 1–11 (1987). https://doi.org/10.1016/0257-8972(87)90003-X

    Article  CAS  Google Scholar 

  4. L. Liu, J. Zhang, C. Ai, Nickel-based superalloys, in Encyclopedia of Materials: Metals and Alloys. ed. by F.G. Caballero (Elsevier, Oxford, 2022)

    Google Scholar 

  5. R.W. Olesinski, G.J. Abbaschian, The C- Si (carbon-silicon) system. Bull. Alloy Phase Diagr. 5(5), 486–489 (1984)

    Article  Google Scholar 

  6. Y. Katoh et al., Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 455(1), 387–397 (2014). https://doi.org/10.1016/j.jnucmat.2014.06.003

    Article  CAS  Google Scholar 

  7. W.L. Vaughn, H.G. Maahs, Active-to-passive transition in the oxidation of silicon carbide and silicon nitride in air. J. Am. Ceram. Soc. 73(6), 1540–1543 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb09793.x

    Article  CAS  Google Scholar 

  8. J. Kimmel et al., Evaluation of CFCC liners with EBC after field testing in a gas turbine. J. Eur. Ceram. Soc. 22(14), 2769–2775 (2002). https://doi.org/10.1016/S0955-2219(02)00142-5

    Article  CAS  Google Scholar 

  9. M. van Roode et al., Ceramic matrix composite combustor liners: a summary of field evaluations. J. Eng. Gas Turbines Power 129(1), 21–30 (2005). https://doi.org/10.1115/1.2181182

    Article  CAS  Google Scholar 

  10. G. Gardiner, Aeroengine Composites, Part 1: The CMC Invasion (Composite World, Cincinnati, 2015)

    Google Scholar 

  11. M. A. Alvin et al., Development and Assessment of Coatings for Future Power Generation Turbines, in presented at the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition (American Society of Mechanical Engineers Digital Collection, 2013), pp. 163–173. doi: https://doi.org/10.1115/GT2012-69654.

  12. E.J. Opila, Oxidation and volatilization of silica formers in water vapor. J. Am. Ceram. Soc. 86(8), 1238–1248 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03459.x

    Article  CAS  Google Scholar 

  13. S.M. Schnurre, J. Gröbner, R. Schmid-Fetzer, Thermodynamics and phase stability in the Si–O system. J. Non-Cryst. Solids 336(1), 1–25 (2004). https://doi.org/10.1016/j.jnoncrysol.2003.12.057

    Article  CAS  Google Scholar 

  14. L.R. Turcer, N.P. Padture, Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics. Scr. Mater. 154, 111–117 (2018). https://doi.org/10.1016/j.scriptamat.2018.05.032

    Article  CAS  Google Scholar 

  15. M.J. Ridley, J. Gaskins, P. Hopkins, E. Opila, Tailoring thermal properties of multi-component rare earth monosilicates. Acta Mater. 195, 698–707 (2020). https://doi.org/10.1016/j.actamat.2020.06.012

    Article  CAS  Google Scholar 

  16. M.J. Ridley et al., Tailoring thermal and chemical properties of a multi-component environmental barrier coating candidate (Sc0.2Nd0.2Er0.2Yb0.2Lu0.2)2Si2O7. Materialia 26, 101557 (2022). https://doi.org/10.1016/j.mtla.2022.101557

    Article  CAS  Google Scholar 

  17. K. El Shafei, N. Al Nasiri, Corrosion behaviour of rare-earth monosilicates in CMAS exposure. Corros. Sci. 202, 110312 (2022). https://doi.org/10.1016/j.corsci.2022.110312

    Article  CAS  Google Scholar 

  18. K.A. Kane et al., Evaluating steam oxidation kinetics of environmental barrier coatings. J. Am. Ceram. Soc. 105(1), 590–605 (2022). https://doi.org/10.1111/jace.18093

    Article  CAS  Google Scholar 

  19. S. Guo, Y. Tanaka, Y. Kagawa, Effect of interface roughness and coating thickness on interfacial shear mechanical properties of EB-PVD yttria-partially stabilized zirconia thermal barrier coating systems. J. Eur. Ceram. Soc. 27(12), 3425–3431 (2007)

    Article  CAS  Google Scholar 

  20. Sh.K. Asl, M.H. Sohi, Effect of grit-blasting parameters on the surface roughness and adhesion strength of sprayed coating. Surf. Interface Anal. 42(6–7), 551–554 (2010). https://doi.org/10.1002/sia.3184

    Article  CAS  Google Scholar 

  21. S.G. Croll, Surface roughness profile and its effect on coating adhesion and corrosion protection: a review. Prog. Org. Coat. 148, 105847 (2020). https://doi.org/10.1016/j.porgcoat.2020.105847

    Article  CAS  Google Scholar 

  22. K.N. Lee, D.S. Fox, N.P. Bansal, Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25(10), 1705–1715 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.12.013

    Article  CAS  Google Scholar 

  23. J. Xu, V.K. Sarin, S. Dixit, S.N. Basu, Stability of interfaces in hybrid EBC/TBC coatings for Si-based ceramics in corrosive environments. Int. J. Refract. Met. Hard Mater. 49, 339–349 (2015). https://doi.org/10.1016/j.ijrmhm.2014.08.013

    Article  CAS  Google Scholar 

  24. S. Ramasamy, S.N. Tewari, K.N. Lee, R.T. Bhatt, D.S. Fox, Mullite–gadolinium silicate environmental barrier coatings for melt infiltrated SiC/SiC composites. Surf. Coat. Technol. 205(12), 3578–3581 (2011). https://doi.org/10.1016/j.surfcoat.2010.12.031

    Article  CAS  Google Scholar 

  25. N. Al Nasiri, N. Patra, M. Pezoldt, J. Colas, W.E. Lee, Investigation of a single-layer EBC deposited on SiC/SiC CMCs: Processing and corrosion behaviour in high-temperature steam. J. Eur. Ceram. Soc. 39(8), 2703–2711 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.12.019

    Article  CAS  Google Scholar 

  26. M. Ridley, E. Garcia, K. Kane, S. Sampath, B. Pint, Environmental barrier coatings on enhanced roughness SiC: effect of plasma spraying conditions on properties and performance. J. Eur. Ceram. Soc. 43(14), 6473–6481 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.06.049

    Article  CAS  Google Scholar 

  27. M. Ridley et al., Steam oxidation and microstructural evolution of rare earth silicate environmental barrier coatings. J. Am. Ceram. Soc. 106(1), 613–620 (2023). https://doi.org/10.1111/jace.18769

    Article  CAS  Google Scholar 

  28. P. Stack, SOFIA: Size of Oxidation Feature from Image Analysis. Oak Ridge National Laboratory, GitHub (2021) https://github.com/TriplePointCat/SOFIA-CV.

  29. Y. F. Su et al., Quantifying High Temperature Corrosion, in presented at the NACE CORROSION (NACE CORROSION, OnePetro, Houston, TX, 2021), p. NACE C2021-16805 https://onepetro.org/NACECORR/proceedings/CORR21/2-CORR21/D021S009R005/464033.

  30. K.A. Kane et al., Steam oxidation of ytterbium disilicate environmental barrier coatings with and without a silicon bond coat. J. Am. Ceram. Soc. 104(5), 2285–2300 (2021). https://doi.org/10.1111/jace.17650

    Article  CAS  Google Scholar 

  31. J. Welty, G.L. Rorrer, D.G. Foster, Fundamentals of Momentum, Heat, and Mass Transfer (Wiley, New York, 2020)

    Google Scholar 

  32. R. A. Svehla, Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, National Aeronautics and Space Administration. Lewis Research Center, Cleveland, NASA-TR-R-132 (1962) https://www.osti.gov/biblio/4803072

  33. A. Hashimoto, The effect of H2O gas on volatilities of planet-forming major elements: I. Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula. Geochim. Cosmochim. Acta 56(1), 511–532 (1992). https://doi.org/10.1016/0016-7037(92)90148-C

    Article  CAS  Google Scholar 

  34. L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, N.P. Padture, Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part I, YAlO3 and γ-Y2Si2O7. J. Eur. Ceram. Soc. 38(11), 3905–3913 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.03.021

    Article  CAS  Google Scholar 

  35. J.L. Stokes, B.J. Harder, V.L. Wiesner, D.E. Wolfe, High-Temperature thermochemical interactions of molten silicates with Yb2Si2O7 and Y2Si2O7 environmental barrier coating materials. J. Eur. Ceram. Soc. 39(15), 5059–5067 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.06.051

    Article  CAS  Google Scholar 

  36. R.I. Webster, E.J. Opila, Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium–magnesium–alumino-silicate resistance. J. Mater. Res. 35(17), 2358–2372 (2020). https://doi.org/10.1557/jmr.2020.151

    Article  CAS  Google Scholar 

  37. M.J. Lance, M.J. Ridley, K.A. Kane, B.A. Pint, Raman spectroscopic characterization of SiO2 phase transformation and Si substrate stress relevant to EBC performance. J. Am. Ceram. Soc. 106(10), 6205–6210 (2023). https://doi.org/10.1111/jace.19190

    Article  CAS  Google Scholar 

  38. B.J. Harder, Oxidation performance of Si-HfO2 environmental barrier coating bond coats deposited via plasma spray-physical vapor deposition. Surf. Coat. Technol. 384, 125311 (2020). https://doi.org/10.1016/j.surfcoat.2019.125311

    Article  CAS  Google Scholar 

  39. J.A. Deijkers, H.N.G. Wadley, Hafnium silicate formation during the reaction of β-cristobalite SiO2 and monoclinic HfO2 particles. J. Am. Ceram. Soc. 103(9), 5400–5410 (2020). https://doi.org/10.1111/jace.17274

    Article  CAS  Google Scholar 

  40. J.A. Deijkers, H.N.G. Wadley, A duplex bond coat approach to environmental barrier coating systems. Acta Mater. 217, 117167 (2021). https://doi.org/10.1016/j.actamat.2021.117167

    Article  CAS  Google Scholar 

  41. W. Chen, Q. Han, J. He, W. He, W. Wang, H. Guo, Effect of HfO2 framework on steam oxidation behavior of HfO2 doped Si coating at high temperatures. Ceram. Int. 48(14), 20201–20210 (2022). https://doi.org/10.1016/j.ceramint.2022.03.299

    Article  CAS  Google Scholar 

  42. Y. Niu, X. Liu, X. Zheng, H. Ji, C. Ding, Microstructure and properties characterization of silicon coatings prepared by vacuum plasma spraying technology. J. Therm. Spray Technol. 18(3), 427–434 (2009). https://doi.org/10.1007/s11666-009-9326-1

    Article  CAS  Google Scholar 

  43. L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, N.P. Padture, Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7. J. Eur. Ceram. Soc. 38(11), 3914–3924 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.03.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Horenburg, D. Newberry, G. Garner, and J. Wade from ORNL for support with testing and metallography. The authors would also like to thank S. Bell and J. Jun for technical review at ORNL. This work was funded by the Advanced Turbine Program, Office of Fossil Energy, Department of Energy. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mackenzie Ridley.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridley, M., Kane, K. & Pint, B. Environmental barrier coatings on SiC without a silicon bond coating: oxidation resistance, failure modes, and future improvements. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00386-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00386-w

Keywords

Navigation