Log in

Zinc and selenium attenuate quaternary heavy metal mixture-induced testicular damage via amplification of the antioxidant system, reduction in metal accumulation, inflammatory and apoptotic biomarkers

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Heavy metals (HMs) such as cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) are highly toxic elements. They are often found together in nature as a heavy metal mixture (HMM) and are known to contribute to subfertility/infertility as environmental pollutants. This study aims to evaluate the potential benefits of treating HMM-induced testicular pathophysiology with zinc (Zn) and/or selenium (Se). Six-week-old male Sprague Dawley rats were grouped into 5 (n = 7). The control group received deionized water, while the other groups were treated with PbCl2 (20 mg kg−1), CdCl2 (1.61 mg kg−1), HgCl2 (0.40 mg kg−1), and Na2AsO3 (10 mg kg−1) in deionized water for 60 days. Additionally, groups III to V received Zn, Se, and Zn/Se, respectively, for 60 days. The study evaluated testis weight, metal accumulation, sperm analysis, FSH, LH, testosterone, prolactin, oxidative stress, antioxidants, pro-inflammatory and apoptotic markers, and presented structural changes in the testis as micrographs. HMM caused a significant increase in testis weight, metal accumulation, prolactin, oxidative stress, and pro-inflammatory and apoptotic markers, while significantly decreasing semen analysis, FSH, LH, and testosterone. Histology showed decreased spermatogenesis and spermiogenesis, as evidenced by the structure of the germ cells and spermatids. However, Zn, Se, or both ameliorated and reversed some of the observed damages. This study provides further evidence for the mitigative potential of Zn, Se, or both in reversing the damage inflicted by HMM in the testis, and as a countermeasure towards improving HM-induced decrease in public health fecundity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data have been provided.

References

  1. Kocadal K, Alkas FB, Battal D, Saygi S (2020) Cellular pathologies and genotoxic effects arising secondary to heavy metal exposure: a review. Hum Exp Toxicol 39:3–13. https://doi.org/10.1177/0960327119874439

    Article  CAS  PubMed  Google Scholar 

  2. Fu Z, ** S (2020) The effects of heavy metals on human metabolism. Toxicol Mech Methods 30:167–176. https://doi.org/10.1080/15376516.2019.1701594

    Article  CAS  PubMed  Google Scholar 

  3. Pujari M, Kapoor D (2021) Heavy metals in the ecosystem: sources and their effects. In: Heavy metals in the environment. Elsevier, pp 1–7

  4. Kim D-W, Ock J, Moon K-W, Park C-H (2021) Association between Pb, Cd, and Hg exposure and liver injury among Korean adults. Int J Environ Res Public Health 18:6783. https://doi.org/10.3390/ijerph18136783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chalabis-Mazurek A, Valverde Piedra JL, Muszynski S et al (2021) The concentration of selected heavy metals in muscles, liver and kidneys of pigs fed standard diets and diets containing 60% of new rye varieties. Animals (Basel) 11:1377. https://doi.org/10.3390/ani11051377

    Article  PubMed  Google Scholar 

  6. Ezedom T, Asagba SO (2016) Effect of a controlled food-chain mediated exposure to cadmium and arsenic on oxidative enzymes in the tissues of rats. Toxicol Rep 3:708–715. https://doi.org/10.1016/j.toxrep.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orr SE, Barnes MC, George HS et al (2018) Exposure to mixtures of mercury, cadmium, lead, and arsenic alters the disposition of single metals in tissues of Wistar rats. J Toxicol Environ Health Part A 81:1246–1256. https://doi.org/10.1080/15287394.2018.1551164

    Article  CAS  Google Scholar 

  8. FAO/WHO J (2014) Safety evaluation of certain food additives and contaminants, vol 68. World Health Organization

  9. Binns HJ, Campbell C, Brown MJ; Advisory Committee on Childhood Lead Poisoning Prevention (2007) Interpreting and managing blood lead levels of less than 10 μg/dL in children and reducing childhood exposure to lead: recommendations of the centers for disease control and prevention advisory committee on childhood lead poisoning prevention. Pediatrics 120(5): e1285–98

  10. Wang X, Wang M, Dong W et al (2013) Subchronic exposure to lead acetate inhibits spermatogenesis and downregulates the expression of Ddx3y in testis of mice. Reprod Toxicol (Elmsford, NY) 42:242–250. https://doi.org/10.1016/j.reprotox.2013.10.003

    Article  CAS  Google Scholar 

  11. Adhikari N, Sinha N, Narayan R, Saxena D (2001) Lead-induced cell death in testes of young rats. J Appl Toxicol 21:275–277. https://doi.org/10.1002/jat.754

    Article  CAS  PubMed  Google Scholar 

  12. Mann U, Shiff B, Patel P (2020) Reasons for worldwide decline in male fertility. Curr Opin Urol 30:296–301. https://doi.org/10.1097/MOU.0000000000000745

    Article  PubMed  Google Scholar 

  13. Levine H, Jorgensen N, Martino-Andrade A et al (2017) Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update 23:646–659. https://doi.org/10.1093/humupd/dmx022

    Article  PubMed  PubMed Central  Google Scholar 

  14. Agarwal A, Mulgund A, Hamada A, Chyatte MR (2015) A unique view on male infertility around the globe. Reprod Biol Endocrinol 13:37. https://doi.org/10.1186/s12958-015-0032-1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dalton TP, He L, Wang B et al (2005) Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci 102:3401–3406. https://doi.org/10.1073/pnas.0406085102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng CY, Mruk DD (2012) The blood-testis barrier and its implications for male contraception. Pharmacol Rev 64:16–64. https://doi.org/10.1124/pr.110.002790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. da Silva RF, Borges CDS, de Almeida LC, Cagnon VHA, de Grava KW (2017) Arsenic trioxide exposure impairs testicular morphology in adult male mice and consequent fetus viability. J Toxicol Environ Health Part A 80:1166–1179. https://doi.org/10.1080/15287394.2017.1376405

    Article  CAS  Google Scholar 

  18. Cupertino MC, Novaes RD, Santos EC et al (2017) Differential susceptibility of germ and leydig cells to cadmium-mediated toxicity: impact on testis structure, adiponectin levels, and steroidogenesis. Oxid Med Cell Longev 2017:3405089. https://doi.org/10.1155/2017/3405089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu Q, Li X, Ge RS (2020) Toxicological effects of cadmium on mammalian testis. Front Genet 11:527. https://doi.org/10.3389/fgene.2020.00527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nna VU, Ujah GA, Mohamed M et al (2017) Cadmium chloride-induced testicular toxicity in male wistar rats; prophylactic effect of quercetin, and assessment of testicular recovery following cadmium chloride withdrawal. Biomed Pharmacother 94:109–123. https://doi.org/10.1016/j.biopha.2017.07.087

    Article  CAS  PubMed  Google Scholar 

  21. Grande G, Barrachina F, Soler-Ventura A et al (2022) The role of testosterone in spermatogenesis: lessons from proteome profiling of human spermatozoa in testosterone deficiency. Front Endocrinol (Lausanne) 13:852661. https://doi.org/10.3389/fendo.2022.852661

    Article  PubMed  Google Scholar 

  22. Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health Part B Crit Rev 12:206–223. https://doi.org/10.1080/10937400902902062

    Article  CAS  Google Scholar 

  23. Tamas MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–267. https://doi.org/10.3390/biom4010252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yilmaz B, Terekeci H, Sandal S, Kelestimur F (2020) Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 21:127–147. https://doi.org/10.1007/s11154-019-09521-z

    Article  CAS  PubMed  Google Scholar 

  25. Casals-Casas C, Desvergne B (2011) Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 73:135–162. https://doi.org/10.1146/annurev-physiol-012110-142200

    Article  CAS  PubMed  Google Scholar 

  26. Lafuente A, Márquez N, Pérez-Lorenzo M, Pazo D, Esquifino AI (2001) Cadmium effects on hypothalamic-pituitary-testicular axis in male rats. Exp Biol Med 226:605–611. https://doi.org/10.1177/153537020122600615

    Article  CAS  Google Scholar 

  27. Yi L, Shang X-J, Lv L et al (2022) Cadmium-induced apoptosis of Leydig cells is mediated by excessive mitochondrial fission and inhibition of mitophagy. Cell Death Dis 13:1–13. https://doi.org/10.1038/s41419-022-05364-w

    Article  CAS  Google Scholar 

  28. Kasperczyk A, Dobrakowski M, Czuba ZP, Horak S, Kasperczyk S (2015) Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile. Toxicol Appl Pharmacol 284:339–344. https://doi.org/10.1016/j.taap.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Wang K, Han T et al (2020) Exposure to multiple metals and prevalence for preeclampsia in Taiyuan, China. Environ Int 145:106098. https://doi.org/10.1016/j.envint.2020.106098

    Article  CAS  PubMed  Google Scholar 

  30. Porru S, Alessio L (1996) The use of chelating agents in occupational lead poisoning. Occup Med (Oxford, England) 46:41–48. https://doi.org/10.1093/occmed/46.1.41

    Article  CAS  Google Scholar 

  31. Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 68:19–31. https://doi.org/10.1007/s12576-017-0571-7

    Article  CAS  PubMed  Google Scholar 

  32. Ge J, Liu LL, Cui ZG et al (2021) Comparative study on protective effect of different selenium sources against cadmium-induced nephrotoxicity via regulating the transcriptions of selenoproteome. Ecotoxicol Environ Saf 215:112135. https://doi.org/10.1016/j.ecoenv.2021.112135

    Article  CAS  PubMed  Google Scholar 

  33. Skalny AA, Tinkov AA, Medvedeva YS et al (2015) Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes. Acta scientiarum polonorum Technologia alimentaria 14:269–276. https://doi.org/10.17306/J.AFS.2015.3.28

    Article  PubMed  Google Scholar 

  34. Zhang D, Liu J, Gao J et al (2014) Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells. PLoS One 9:e103427. https://doi.org/10.1371/journal.pone.0103427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Onakpa MM, Njan AA, Kalu OC (2018) A review of heavy metal contamination of food crops in Nigeria. Ann Glob Health 84:488–494. https://doi.org/10.29024/aogh.2314

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vodela JK, Renden JA, Lenz SD, McElhenney WH, Kemppainen BW (1997) Drinking water contaminants (arsenic, cadmium, lead, benzene, and trichloroethylene). 1. Interaction of contaminants with nutritional status on general performance and immune function in broiler chickens. Poult Sci 76:1474–1492. https://doi.org/10.1093/ps/76.11.1474

    Article  CAS  PubMed  Google Scholar 

  37. Anyanwu BO, Orish CN, Ezejiofor AN, Nwaogazie IL, Orisakwe OE (2020) Protective effect of costus afer aqueous leaf extract (CALE) on low-dose heavy metal mixture-induced alterations in serum lipid profile and hematological parameters of male wistar albino rats. J Toxicol 2020:8850264. https://doi.org/10.1155/2020/8850264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anyanwu BO, Orish CN, Ezejiofor AN, Nwaogazie IL, Orisakwe OE (2020) Neuroprotective effect of Costus afer on low dose heavy metal mixture (lead, cadmium and mercury) induced neurotoxicity via antioxidant, anti-inflammatory activities. Toxicol Rep 7:1032–1038. https://doi.org/10.1016/j.toxrep.2020.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Institóris L, Kovács D, Kecskemeti-Kovacs I, Lukács A, Szabó A, Lengyel Z, Papp A, Nagymajtényi L, Dési I (2006) Immunotoxicological investigation of subacute combined exposure with low doses of Pb, Hg and Cd in rats. Acta Biol Hung 57:433–439. https://doi.org/10.1556/ABiol.57.2006.4.5

    Article  PubMed  Google Scholar 

  40. Eddie-Amadi BF, Ezejiofor AN, Orish CN, Orisakwe OE (2022) Zinc and selenium mitigated heavy metals mixture (Pb, Al, Hg and Mn) mediated hepatic-nephropathy via modulation of oxido-inflammatory status and NF-kB signaling in female albino rats. Toxicology 481:153350. https://doi.org/10.1016/j.tox.2022.153350

    Article  CAS  PubMed  Google Scholar 

  41. Liu G, **e C, Fang Y et al (2018) Splenectomy after partial hepatectomy accelerates liver regeneration in mice by promoting tight junction formation via polarity protein Par 3-aPKC. Life Sci 192:91–98. https://doi.org/10.1016/j.lfs.2017.11.032

    Article  CAS  PubMed  Google Scholar 

  42. Kumar A, Nagar M (2014) Histomorphometric study of testis in deltamethrin treated albino rats. Toxicol Rep 1:401–410. https://doi.org/10.1016/j.toxrep.2014.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Okoye EA, Bocca B, Ruggieri F, Ezejiofor AN, Nwaogazie IL, Domingo JL, Rovira J, Frazzoli C, Orisakwe OE (2021) Metal pollution of soil, plants, feed and food in the Niger Delta, Nigeria: health risk assessment through meat and fish consumption. Environ Res 198:111273. https://doi.org/10.1016/j.envres.2021.111273

    Article  CAS  PubMed  Google Scholar 

  44. Slott VL, Suarez JD, Perreault SD (1991) Rat sperm motility analysis: methodologic considerations. Reprod Toxicol (Elmsford, NY) 5:449–458. https://doi.org/10.1016/0890-6238(91)90009-5

    Article  CAS  Google Scholar 

  45. Chapin RE, Filler RS, Gulati D et al (1992) Methods for assessing rat sperm motility. Reprod Toxicol (Elmsford, NY) 6:267–273. https://doi.org/10.1016/0890-6238(92)90183-t

    Article  CAS  Google Scholar 

  46. Moskovtsev SI, Librach CL (2013) Methods of sperm vitality assessment. Methods Mol Biol (Clifton, NJ) 927:13–19. https://doi.org/10.1007/978-1-62703-038-0_2

    Article  CAS  Google Scholar 

  47. Gupta A, Kumar A, Naqvi S, Flora SJS (2021) Chronic exposure to multi-metals on testicular toxicity in rats. Toxicol Mech Methods 31:53–66. https://doi.org/10.1080/15376516.2020.1828522

    Article  CAS  PubMed  Google Scholar 

  48. Maremanda KP, Khan S, Jena G (2014) Zinc protects cyclophosphamide-induced testicular damage in rat: involvement of metallothionein, tesmin and Nrf2. Biochem Biophys Res Commun 445:591–596. https://doi.org/10.1016/j.bbrc.2014.02.055

    Article  CAS  PubMed  Google Scholar 

  49. Haugen TB, Grotmol T (1998) pH of human semen. Int J Androl 21:105–108. https://doi.org/10.1046/j.1365-2605.1998.00108.x

    Article  CAS  PubMed  Google Scholar 

  50. Lin MC, Tsai TC, Yang YS (1992) Measurement of viscosity of human semen with a rotational viscometer. J Formos Med Assoc 91:419–423

    CAS  PubMed  Google Scholar 

  51. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  52. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim MF (2008) The role of nitric oxide on the proliferation of a human osteoblast cell line stimulated with hydroxyapatite. J Oral Implantol 34:196–202. https://doi.org/10.1563/0.910.1

    Article  PubMed  Google Scholar 

  53. Oktem G, Uysal A, Oral O et al (2012) Resveratrol attenuates doxorubicin-induced cellular damage by modulating nitric oxide and apoptosis. Exp Toxicol Pathol 64:471–479. https://doi.org/10.1016/j.etp.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  54. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590. https://doi.org/10.1126/science.179.4073.588

    Article  CAS  PubMed  Google Scholar 

  55. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4

    Article  CAS  PubMed  Google Scholar 

  56. Jollow D, Mitchell J, Zampaglione N, Gillette J (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169. https://doi.org/10.1159/000136485

    Article  CAS  PubMed  Google Scholar 

  57. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  PubMed  Google Scholar 

  58. Bergmeyer H, Berat E, Schmid F, Stark H (1974) Methods of enzymatic analysis, 2nd edn. Verlag Chemie, Weinheim and Academic Press, New York and London

  59. Siu ER, Mruk DD, Porto CS, Cheng CY (2009) Cadmium-induced testicular injury. Toxicol Appl Pharmacol 238:240–249. https://doi.org/10.1016/j.taap.2009.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aoyagi T, Ishikawa H, Miyaji K, Hayakawa K, Hata M (2002) Cadmium-induced testicular damage in a rat model of subchronic intoxication. Reprod Med Biol 1:59–63. https://doi.org/10.1046/j.1445-5781.2002.00010.x

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yu HT, Zhen J, Leng JY, Cai L, Ji HL, Keller BB (2021) Zinc as a countermeasure for cadmium toxicity. Acta Pharmacol Sin 42:340–346. https://doi.org/10.1038/s41401-020-0396-4

    Article  CAS  PubMed  Google Scholar 

  62. Batra N, Nehru B, Bansal M (2001) Influence of lead and zinc on rat male reproduction at ‘biochemical and histopathological levels.’ J Appl Toxicol 21:507–512. https://doi.org/10.1002/jat.796

    Article  CAS  PubMed  Google Scholar 

  63. Rafique M, Khan N, Perveen K, Naqvi A (2009) The effects of lead and zinc on the quality of semen of albino rats. J Coll Physicians Surg Pak 19:510–513

    PubMed  Google Scholar 

  64. Liu L, Yang B, Cheng Y, Lin H (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167:308–319. https://doi.org/10.1007/s12011-015-0314-7

    Article  CAS  PubMed  Google Scholar 

  65. Rahman MM, Hossain KFB, Banik S et al (2019) Selenium and zinc protections against metal-(loids)-induced toxicity and disease manifestations: a review. Ecotoxicol Environ Saf 168:146–163. https://doi.org/10.1016/j.ecoenv.2018.10.054

    Article  CAS  PubMed  Google Scholar 

  66. Amara S, Abdelmelek H, Garrel C et al (2008) Preventive effect of zinc against cadmium-induced oxidative stress in the rat testis. J Reprod Dev 54:129–134. https://doi.org/10.1262/jrd.18110

    Article  CAS  PubMed  Google Scholar 

  67. Souza ACF, Marchesi SC, Domingues de Almeida Lima G et al (2016) Effects of sodium arsenite and arsenate in testicular histomorphometry and antioxidants enzymes activities in rats. Biol Trace Elem Res 171:354–362. https://doi.org/10.1007/s12011-015-0523-0

    Article  CAS  PubMed  Google Scholar 

  68. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Experientia Suppl 2012:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  69. Shimada H, Narumi R, Nagano M, Yasutake A, Waalkes MP, Imamura Y (2009) Strain difference of cadmium-induced testicular toxicity in inbred Wistar-Imamichi and Fischer 344 rats. Arch Toxicol 83:647–652. https://doi.org/10.1007/s00204-009-0442-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. David M, Jahan S, Hussain J et al (2022) Biochemical and reproductive biomarker analysis to study the consequences of heavy metal burden on health profile of male brick kiln workers. Sci Rep 12:7172. https://doi.org/10.1038/s41598-022-11304-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bashandy SAE-M, Omara EAA, Ebaid H, Amin MM, Soliman MS (2016) Role of zinc as an antioxidant and anti-inflammatory to relieve cadmium oxidative stress induced testicular damage in rats. Asian Pac J Trop Biomed 6:1056–1064. https://doi.org/10.1016/j.apjtb.2016.08.016

    Article  CAS  Google Scholar 

  72. Chen X-W, Chu J-H, Li L-X, Gao P-C, Wang Z-Y, Fan R-F (2022) Protective mechanism of selenium on mercuric chloride-induced testis injury in chicken via p38 MAPK/ATF2/iNOS signaling pathway. Theriogenology 187:188–194. https://doi.org/10.1016/j.theriogenology.2022.05.007

    Article  CAS  PubMed  Google Scholar 

  73. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol 12:643972. https://doi.org/10.3389/fphar.2021.643972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rebourcet D, Darbey A, Monteiro A et al (2017) Sertoli cell number defines and predicts germ and leydig cell population sizes in the adult mouse testis. Endocrinology 158:2955–2969. https://doi.org/10.1210/en.2017-00196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Acharya UR, Mishra M, Patro J, Panda MK (2008) Effect of vitamins C and E on spermatogenesis in mice exposed to cadmium. Reprod Toxicol 25:84–88. https://doi.org/10.1016/j.reprotox.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  76. De Franciscis P, Ianniello R, Labriola D et al (2015) Environmental pollution due to cadmium: measure of semen quality as a marker of exposure and correlation with reproductive potential. Clin Exp Obstet Gynecol 42:767–770

    Article  PubMed  Google Scholar 

  77. Ronis MJ, Badger TM, Shema SJ, Roberson PK, Shaikh F (1996) Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol 136:361–371. https://doi.org/10.1006/taap.1996.0044

    Article  CAS  PubMed  Google Scholar 

  78. Hamadouche NA, Nesrine S, Abdelkeder A (2013) Lead toxicity and the hypothalamic-pituitary-testicular axis. Notulae Scientia Biologicae 5:1–6. https://doi.org/10.15835/nsb518038

    Article  Google Scholar 

  79. Saxena DK, Hussain T, Lal B, Chandra SV (1986) Lead induced testicular dysfunction in weaned rats. Ind Health 24:105–109. https://doi.org/10.2486/indhealth.24.105

    Article  CAS  PubMed  Google Scholar 

  80. Oliveira H, Spano M, Santos C, Pereira ML (2009) Lead chloride affects sperm motility and acrosome reaction in mice: lead affects mice sperm motility and acrosome reaction. Cell Biol Toxicol 25:341–353. https://doi.org/10.1007/s10565-008-9088-4

    Article  CAS  PubMed  Google Scholar 

  81. Pandya C, Pillai P, Nampoothiri LP, Bhatt N, Gupta S, Gupta S (2012) Effect of lead and cadmium co-exposure on testicular steroid metabolism and antioxidant system of adult male rats. Andrologia 44 Suppl 1:813–822. https://doi.org/10.1111/j.1439-0272.2010.01137.x

    Article  CAS  PubMed  Google Scholar 

  82. Wiebe JP, Salhanick AI, Myers KI (1983) On the mechanism of action of lead in the testis: In vitro suppresion of FSH receptors, cyclic AMP and steroidogenesis. Life Sci 32:1997–2005. https://doi.org/10.1016/0024-3205(83)90051-6

    Article  CAS  PubMed  Google Scholar 

  83. Staessen JA, Nawrot T, Hond ED et al (2001) Renal function, cytogenetic measurements, and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers. Lancet 357:1660–1669. https://doi.org/10.1016/s0140-6736(00)04822-4

    Article  CAS  PubMed  Google Scholar 

  84. Sokol RZ, Wang S, Wan YJ, Stanczyk FZ, Gentzschein E, Chapin RE (2002) Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat. Environ Health Perspect 110:871–874. https://doi.org/10.1289/ehp.02110871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ishizuka M, Ohtsuka E, Inoue A et al (2016) Abnormal spermatogenesis and male infertility in testicular zinc finger protein Zfp318-knockout mice. Dev Growth Differ 58:600–608. https://doi.org/10.1111/dgd.12301

    Article  CAS  PubMed  Google Scholar 

  86. Wu J, Wu S, **e Y et al (2015) Zinc protects sperm from being damaged by reactive oxygen species in assisted reproduction techniques. Reprod Biomed Online 30:334–339. https://doi.org/10.1016/j.rbmo.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  87. Fatima P, Hossain MM, Rahman D et al (2015) Association of blood and semen lead and zinc level with semen parameter in the male partner of infertile couple. Mymensingh Med J 24:537–541

    CAS  PubMed  Google Scholar 

  88. de Araujo Ramos AT, Diamante MAS, de Almeida LC, Dolder H, de Souza PF (2017) Morphological and morphometrical changes on adult Wistar rat testis caused by chronic sodium arsenite exposure. Environ Sci Pollut Res Int 24:27905–27912. https://doi.org/10.1007/s11356-017-0200-2

    Article  CAS  PubMed  Google Scholar 

  89. Balduit A, Mangogna A, Agostinis C et al (2020) Zinc oxide exerts anti-inflammatory properties on human placental cells. Nutrients 12:1822. https://doi.org/10.3390/nu12061822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Said L, Banni M, Kerkeni A, Said K, Messaoudi I (2010) Influence of combined treatment with zinc and selenium on cadmium induced testicular pathophysiology in rat. Food Chem Toxicol 48:2759–2765. https://doi.org/10.1016/j.fct.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  91. Sugiura Y, Kashiba M, Maruyama K et al (2005) Cadmium exposure alters metabolomics of sulfur-containing amino acids in rat testes. Antioxid Redox Signal 7:781–787. https://doi.org/10.1089/ars.2005.7.781

    Article  CAS  PubMed  Google Scholar 

  92. Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M (2017) The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res 11:IE01. https://doi.org/10.7860/JCDR/2017/23927.9886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Picon-Pages P, Garcia-Buendia J, Munoz FJ (2019) Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 1865:1949–1967. https://doi.org/10.1016/j.bbadis.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  94. Madhurantakam C, Duru AD, Sandalova T, Webb JR, Achour A (2012) Inflammation-associated nitrotyrosination affects TCR recognition through reduced stability and alteration of the molecular surface of the MHC complex. PLoS One 7:e32805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thomas DD (2015) Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biol 5:225–233. https://doi.org/10.1016/j.redox.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shafik NM, El Batsh MM (2016) Protective effects of combined selenium and Punica granatum treatment on some inflammatory and oxidative stress markers in arsenic-induced hepatotoxicity in rats. Biol Trace Elem Res 169:121–128. https://doi.org/10.1007/s12011-015-0397-1

    Article  CAS  PubMed  Google Scholar 

  97. Blaser H, Dostert C, Mak TW, Brenner D (2016) TNF and ROS crosstalk in inflammation. Trends Cell Biol 26:249–261. https://doi.org/10.1016/j.tcb.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  98. Morgan MJ, Liu ZG (2010) Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells 30:1–12. https://doi.org/10.1007/s10059-010-0105-0

    Article  CAS  PubMed  Google Scholar 

  99. Didion SP (2017) Cellular and oxidative mechanisms associated with interleukin-6 signaling in the vasculature. Int J Mol Sci 18:2563. https://doi.org/10.3390/ijms18122563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khanna S, Lakhera PC, Khandelwal S (2011) Interplay of early biochemical manifestations by cadmium insult in sertoli-germ coculture: an in vitro study. Toxicology 287:46–53. https://doi.org/10.1016/j.tox.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  101. Rotimi DE, Ojo OA, Olaolu TD, Adeyemi OS (2022) Exploring Nrf2 as a therapeutic target in testicular dysfunction. Cell Tissue Res 390:23–33. https://doi.org/10.1007/s00441-022-03664-3

    Article  CAS  PubMed  Google Scholar 

  102. Buha A, Baralic K, Djukic-Cosic D et al (2021) The role of toxic metals and metalloids in Nrf2 signaling. Antioxidants (Basel) 10:630. https://doi.org/10.3390/antiox10050630

    Article  CAS  PubMed  Google Scholar 

  103. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54:287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  104. Messaoudi I, El Heni J, Hammouda F, Said K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161. https://doi.org/10.1007/s12011-009-8324-y

    Article  CAS  PubMed  Google Scholar 

  105. Li B, Cui W, Tan Y et al (2014) Zinc is essential for the transcription function of Nrf2 in human renal tubule cells in vitro and mouse kidney in vivo under the diabetic condition. J Cell Mol Med 18:895–906. https://doi.org/10.1111/jcmm.12239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bao RK, Zheng SF, Wang XY (2017) Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K/AKT/Bcl-2 signaling pathway. Environ Sci Pollut Res Int 24:20342–20353. https://doi.org/10.1007/s11356-017-9422-6

    Article  CAS  PubMed  Google Scholar 

  107. Raut S, Deshpande S, Balasinor NH (2019) Unveiling the role of prolactin and its receptor in male reproduction. Horm Metab Res 51:215–219. https://doi.org/10.1055/a-0859-1144

    Article  CAS  PubMed  Google Scholar 

  108. Anka AU, Usman AB, Kaoje AN et al (2022) Potential mechanisms of some selected heavy metals in the induction of inflammation and autoimmunity. Eur J Inflamm 20:1721727X221122719. https://doi.org/10.1177/1721727x221122719

    Article  CAS  Google Scholar 

  109. Martin-Hidalgo D, Bragado MJ, Batista AR, Oliveira PF, Alves MG (2019) Antioxidants and male fertility: from molecular studies to clinical evidence. Antioxidants (Basel) 8:89. https://doi.org/10.3390/antiox8040089

    Article  CAS  PubMed  Google Scholar 

  110. He Y, Zou L, Luo W et al (2020) Heavy metal exposure, oxidative stress and semen quality: exploring associations and mediation effects in reproductive-aged men. Chemosphere 244:125498. https://doi.org/10.1016/j.chemosphere.2019.125498

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orish E. Orisakwe.

Ethics declarations

Conflict of interest

Authors confirm that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozoani, H., Ezejiofor, A.N., Okolo, K.O. et al. Zinc and selenium attenuate quaternary heavy metal mixture-induced testicular damage via amplification of the antioxidant system, reduction in metal accumulation, inflammatory and apoptotic biomarkers. Toxicol Res. 39, 497–515 (2023). https://doi.org/10.1007/s43188-023-00187-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-023-00187-z

Keywords

Navigation