Log in

Enhancement of biomass production and bio-products extraction from microalgae using non-thermal plasma process toward biofuel production

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study assessed the effect of a 3 min. application of non-thermal plasma (NTP) on the synthesis of biomass concentration, lipid and fatty acid contents, elemental composition and cellulosic material in Scenedesmus species. We also investigated the effects of a longer period (10 min.) exposure of microalgal biomass to NTP prior to lipid extraction. After subjecting Scenedesmus biomass to NTP for 3 min., the biomass concentration increased from 0.35 to 2.02 g L−1 after 10 days of cultivation, while lipid productivity was maximal (20.6 mg L−1 day−1) after 4 days cultivation, containing high percentages of saturated fatty acids, notably palmitic acid (C16:0). Results of elemental analyses (C, N, O, Na, Mg, Si, K, Ca) in Scenedesmus biomass showed that NTP application does not change the content of these elements in microalgal biomass. However, the cellulose content was almost twice as high (29.3%) than in untreated control sample (14.5%), which may be associated with NTP-mediated depolymerization of D-glucose units. After pretreating the microalgal biomass for 10 min. with NTP, the lipid recovery from Scenedesmus sp. varied among treatments: NTP (air + argon: 32.8%) ˃ sonication (26.1%) ˃ NTP (argon: 23.6%) ˃ NTP (air: 16.2%) ˃ control (15.0%). These results suggest that NTP is a promising technology to not only induce lipid synthesis in microalgal cells, but also to enhance the lipid recovery prior to lipid extraction. The lipids can be converted into biodiesel, while the cellulosic material in Scenedesmus biomass treated by NTP can be used to obtain second-generation bioethanol.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All relevant data generated and analysed during this study, which include experimental, characterization, and computational data, are included in this article.

References

  • Alkawareek MY, Algwari QT, Laverty G, Gorman SP, Graham WG, O’Connell D, Gilmore BF (2012) Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma. PLoS ONE 7(e44289):1–12

    Google Scholar 

  • Asghari M, Samani BH, Ebrahimi R (2022) Review on non-thermal plasma technology for biodiesel production: mechanisms, reactors configuration, hybrid reactors. Energy Convers Manag 258:115514

    Article  CAS  Google Scholar 

  • Avila-León IA, Matsudo MC, Ferreira-Camargo LS, Rodrigues-Ract JN, Carvalho JCM (2020) Evaluation of Neochloris oleoabundans as sustainable source of oil-rich biomass. Braz J Chem Eng 37(1):41–48

    Article  Google Scholar 

  • Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2(2):164–173

    Article  Google Scholar 

  • Baudelet P-H, Ricochon G, Linder M, Muniglia L (2017) A new insight into cell walls of Chlorophyta. Algal Res 25:333–371

    Article  Google Scholar 

  • Benoit M, Rodrigues A, Vigier KDO, Fourré E, Barrault J, Tatibouët J-M, Jérôme F (2012) Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose. Green Chem 14(8):2212–2215

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Chu S (1942) The influence of the mineral composition of the medium on the growth of planktonic algae: part I. Methods and culture media. J Ecol 30:284–325

  • Cubas A, Machado M, Pinto C, Moecke E, Dutra A (2016) Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology. Waste Manag 47:149–154

    Article  CAS  PubMed  Google Scholar 

  • Cubas ALV, de Medeiros MM, dos Santos JR, Zanco JJ, Ribeiro DHB, André AS, Debacher NA, Moecke EHS (2019) Effect of chemical species generated by different geometries of air and argon non-thermal plasma reactors on bacteria inactivation in water. Sep Purif Technol 222:68–74

    Article  CAS  Google Scholar 

  • Cubas ALV, Machado MM, Bianchet RT, da Costa Hermann KA, Bork JA, Debacher NA, Lins EF, Maraschin M, Coelho DS, Moecke EHS (2020) Oil extraction from spent coffee grounds assisted by non-thermal plasma. Sep Purif Techno 250:117171

  • de Farias Neves F, Demarco M, Tribuzi G (2019) Drying and quality of microalgal powders for human alimentation. In: Microalgae - from physiology to application. IntechOpen, pp 1–20

  • de Souza L, Lima AS, Matos ÂP, Wheeler RM, Bork JA, Cubas ALV, Moecke EHS (2021) Biopolishing sanitary landfill leachate via cultivation of lipid-rich Scenedesmus microalgae. J Cleaner Prod 303:127094

    Article  Google Scholar 

  • Di Caprio F, Altimari P, Pagnanelli F (2018) Integrated microalgae biomass production and olive mill wastewater biodegradation: Optimization of the wastewater supply strategy. Cheml Eng J 349:539–546

    Article  Google Scholar 

  • Feller R, Matos ÂP, Mazzutti S, Moecke EHS, Tres MV, Derner RB, Oliveira JV, Junior AF (2018) Polyunsaturated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine microalgae extracts obtained by supercritical CO2 and subcritical n-butane. J Supercrit Fluids 133:437–443

    Article  CAS  Google Scholar 

  • Flynn PB, Higginbotham S, Nid’a HA, Gorman SP, Graham WG, Gilmore BF (2015) Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int J Antimicrob Aggents 46(1):101–107

  • Fontana IB, Peterson M, Cechinel MAP (2018) Application of brewing waste as biosorbent for the removal of metallic ions present in groundwater and surface waters from coal regions. J Environ Chem Eng 6(1):660–670

    Article  CAS  Google Scholar 

  • Franco ALC, Lôbo IP, Cruz RSd, Teixeira CMLL, Almeida Neto JAd, Menezes RS (2013) Biodiesel de microalgas: avanços e desafios. Quim Nova 36:437–448

    Article  CAS  Google Scholar 

  • Goettel M, Eing C, Gusbeth C, Straessner R, Frey W (2013) Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res 2(4):401–408

    Article  Google Scholar 

  • Grace CEE, Lakshmi PK, Meenakshi S, Vaidyanathan S, Srisudha S, Mary MB (2020) Biomolecular transitions and lipid accumulation in green microalgae monitored by FTIR and Raman analysis. Spectrochim Acta A Mol Biomol Spectrosc 224:117382

    Article  CAS  Google Scholar 

  • Graham W, Stalder K (2011) Plasmas in liquids and some of their applications in nanoscience. J Phys D Appl Phys 44(17):174037

    Article  Google Scholar 

  • Günerken E, D’Hondt E, Eppink M, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33(2):243–260

    Article  PubMed  Google Scholar 

  • Jérôme F, Chatel G, Vigier KDO (2016) Depolymerization of cellulose to processable glucans by non-thermal technologies. Green Chem 18(14):3903–3913

    Article  Google Scholar 

  • Kim H-J, Won C-H, Hong Y-P, Lee IH, Kim H-W (2021) Energy-effective elimination of harmful microcystins by a non-thermal plasma process. Chemosphere 284:131338

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63

    Article  Google Scholar 

  • Kovačević VV, Dojčinović BP, Jović M, Roglić GM, Obradović BM, Kuraica MM (2017) Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J Phys D Appl Phys 50(15):155205

    Article  Google Scholar 

  • Liu J, Chen J, Chen Z, Qin S, Huang Q (2016) Isolation and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis (Chlorophyceae) produced by dielectric barrier discharge plasma. Phycologia 55(6):650–658

    Article  CAS  Google Scholar 

  • Locke BR, Shih K-Y (2011) Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci Technol 20(3):034006

    Article  Google Scholar 

  • Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L, Lukes P (2013) Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Process Polym 10(7):649–659

    Article  CAS  Google Scholar 

  • Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2008) Furfural: Hemicellulose/xylose derived biochemical. Biofpr 2(5):438–454

    Article  CAS  Google Scholar 

  • Martínez JM, Luengo E, Saldaña G, Álvarez I, Raso J (2017) C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis. Food Res Int 99:1042–1047

    Article  PubMed  Google Scholar 

  • Matos ÂP (2021) Advances in microalgal research in Brazil. Braz Arch Biol Technol 64:e21200531

    Article  CAS  Google Scholar 

  • Matos ÂP, Feller R, Moecke EHS, de Oliveira JV, Junior AF, Derner RB, Sant’Anna ES (2016) Chemical characterization of six microalgae with potential utility for food application. J Am Oil Chem Soc 93(7):963–972

    Article  CAS  Google Scholar 

  • Matos Â, Ferreira W, Morioka L, Moecke E, França K, Sant’Anna E, (2018) Cultivation of Chlorella vulgaris in medium supplemented with desalination concentrate grown in a pilot-scale open raceway. Braz J Chem Eng 35:1183–1192

    Article  CAS  Google Scholar 

  • Matos ÂP, Feller R, Moecke EHS, Sant’Anna ES (2015) Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate. Bioresour Technol 197:48-55

  • Matos ÂP, Teixeira MS, Corrêa FM, Machado MM, Werner RI, Aguiar AC, Cubas AL, Sant’Anna ES, Moecke EH (2020) Disruption of Nannochloropsis gaditana (Eustigmatophyceae) rigid cell wall by non-thermal plasma prior to lipid extraction and its effect on fatty acid composition. Braz J Chem Eng 36:1419-1428

  • Matos ÂP, Novelli E, Tribuzi G (2022) Use of algae as food ingredient: sensory acceptance and commercial products. Front Food Sci Technol 2989801

  • Matos ÂP (2017) Cultivo, caracterização e técnicas de processamento de algas. Universidade Federal de Santa Catarina (Tese de doutorado), 214p

  • Meng Y, Yao C, Xue S, Yang H (2014) Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresour Technol 151:347–354

    Article  CAS  PubMed  Google Scholar 

  • Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF (2013) Standard methods for measuring growth of algae and their composition. In: Algae for biofuels and energy. Springer, pp 265–284

  • Moheimani NR, McHenry MP, De Boer K, Bahri PA (2015) Biomass and biofuels from microalgae. Biofuel and biorefinery technologies Springer-Verlag GmbH

  • Pancha I, Chokshi K, Maurya R, Trivedi K, Patidar SK, Ghosh A, Mishra S (2015) Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 189:341–348

    Article  CAS  PubMed  Google Scholar 

  • Pereira GN, Cesca K, Cubas ALV, de Oliveira D (2021) Use of non-thermal plasma in lignocellulosic materials: a smart alternative. Trends Food Sci Technol 109:365–373

    Article  CAS  Google Scholar 

  • Robles-Heredia J, Sacramento-Rivero J, Canedo-López Y, Ruiz-Marín A, Vilchiz-Bravo L (2015) A multistage gradual nitrogenreduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedesmus obliquus. Braz J Chem Eng 32(2):335–345

    Article  Google Scholar 

  • Rüger J, Unger N, Schie IW, Brunner E, Popp J, Krafft C (2016) Assessment of growth phases of the diatom Ditylum brightwellii by FT-IR and Raman spectroscopy. Algal Res 19:246–325

    Article  Google Scholar 

  • Saleem F, Harris J, Zhang K, Harvey A (2020) Non-thermal plasma as a promising route for the removal of tar from the product gas of biomass gasification – a critical review. Chem Eng J 382:122761

    Article  Google Scholar 

  • Shabanizadeh H, Taghavijeloudar M (2023) Potential of pomegranate seed powder as a novel natural flocculant for pulp and paper wastewater treatment: Characterization, comparison and combination with alum. Process Saf Environ Prot 170:1217–1227

    Article  CAS  Google Scholar 

  • Sharma KK, Garg S, Li Y, Malekizadeh A, Schenk PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4(4):397–407

    Article  CAS  Google Scholar 

  • Silva C, Gris B, Bertucco A (2016) Simulation of microalgal growth in a continuous photobioreactor with sedimentation and partial biomass recycling. Braz J Chem Eng 33(4):773–781

    Article  CAS  Google Scholar 

  • Simioni T, Quadri MB, Derner RB (2019) Drying of Scenedesmus obliquus: experimental and modeling study. Algal Res 39:101428

    Article  Google Scholar 

  • Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2015) Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J 94:22–29

    Article  CAS  Google Scholar 

  • Sivaramakrishnan R, Suresh S, Pugazhendhi A, Pauline JMN, Incharoensakdi A (2020) Response of Scenedesmus sp. to microwave treatment: Enhancement of lipid, exopolysaccharide and biomass production. Bioresource Technol 312:123562

  • Sluiter JB, Chum H, Gomes AC, Tavares RP, Azevedo V, Pimenta MT, Rabelo SC, Marabezi K, Curvelo AA, Alves AR (2016) Evaluation of Brazilian sugarcane bagasse characterization: an interlaboratory comparison study. J AOAC Int 99(3):579–585

    Article  CAS  Google Scholar 

  • Taghavijeloudar M, Park J, Hashemi S, Han M (2019) The effects of surfactants (sodium dodecyl sulfate, triton X-100 and cetyl trimethyl ammonium bromide) on the dewaterability of microalgae biomass using pressure filtration. Bioresource Technol 273:565–572

    Article  CAS  Google Scholar 

  • Taghavijeloudar M, Kebria DY, Yaqoubnejad P (2021) Simultaneous harvesting and extracellular polymeric substances extrusion of microalgae using surfactant: Promoting surfactant-assisted flocculation through pH adjustment. Bioresource Technol 319:124224

    Article  CAS  Google Scholar 

  • Taghavijeloudar M, Farzinfar B, Yaqoubnejad P, Ahangar AK (2022) A novel approach for microalgal cell disruption and bioproducts extraction using non-thermal atmospheric plasma (NTAP) technology and chitosan flocculation. Sep Purif Technol 302:122142

    Article  CAS  Google Scholar 

  • Tang YZ, Lu XP, Laroussi M, Dobbs FC (2008) Sublethal and killing effects of atmospheric-pressure, nonthermal plasma on eukaryotic microalgae in aqueous media. Plasma Process Polym 5(6):552–5588

    Article  CAS  Google Scholar 

  • Templeton DW, Quinn M, Van Wychen S, Hyman D, Laurens LM (2012) Separation and quantification of microalgal carbohydrates. J Chromatogr A 1270:225–234

    Article  CAS  PubMed  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31(4):233–239

    Article  CAS  PubMed  Google Scholar 

  • Veillette M, Giroir-Fendler A, Faucheux N, Heitz M (2017) Esterification of free fatty acids with methanol to biodiesel using heterogeneous catalysts: From model acid oil to microalgae lipids. Chem Eng J 308:101–109

    Article  CAS  Google Scholar 

  • Wang M, Yuan W, Jiang X, **g Y, Wang Z (2014) Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technol 153:315–321

    Article  CAS  Google Scholar 

  • Wicker RJ, Kumar G, Khan E, Bhatnagar A (2021) Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme. Chem Eng J 415:128932

    Article  CAS  Google Scholar 

  • Wölnerhanssen BK, Meyer-Gerspach AC, Beglinger C, Islam MS (2020) Metabolic effects of the natural sweeteners xylitol and erythritol: a comprehensive review. Crit Rev Food Sci Nutr 60(12):1986–1998

    Article  PubMed  Google Scholar 

  • Xu Z, Zhu B, Xue X, Hu S, Cheng C (2022) Study on immediate and long-term growth inhibition of Microcystis aeruginosa by non-thermal plasma. Chem Eng J 429:132397

    Article  CAS  Google Scholar 

  • Ye S, Gao L, Zhao J, An M, Wu H, Li M (2020) Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2. Bioresource Technol 302:122903

  • Yepez XV, Keener KM (2016) High-voltage atmospheric cold plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. Innov Food Sci Emerg Technol 38:169–174

    Article  CAS  Google Scholar 

  • Zhang T-Y, Wu Y-H, Wang J-H, Wang X-X, Deantes-Espinosa VM, Dao G-H, Tong X, Hu H-Y (2019) Heterotrophic cultivation of microalgae in straw lignocellulose hydrolysate for production of high-value biomass rich in polyunsaturated fatty acids (PUFA). Chem Eng J 367:37–44

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AP Matos thanks CNPq/Brazil for junior post-doctoral scholarship, ID grant N° 151086/2020-6. The authors would like to thank Dra. Karina Cesca from the Federal University of Santa Catarina for hel** with the infrared spectroscopy analysis.

Funding

This work was funded by the Instituto Ânima, Capes and CNPq/Brazil.

Author information

Authors and Affiliations

Authors

Contributions

ALVC: methodology, resources, supervision. EHSM: conceptualization, methodology, supervision, resources, data analysis. LS: experimental, data analysis, writing—original draft. ASL: experimental, formal analysis. GNP: experimental, data curation. RBD: supervision, resources. APM: data curation, calculations, writing – review and editing.

Corresponding author

Correspondence to Anelise Leal Vieira Cubas.

Ethics declarations

Competing interests

The authors declare that there have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cubas, A.L.V., Moecke, E.H.S., de Souza, L. et al. Enhancement of biomass production and bio-products extraction from microalgae using non-thermal plasma process toward biofuel production. Braz. J. Chem. Eng. (2024). https://doi.org/10.1007/s43153-024-00456-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43153-024-00456-w

Keywords

Navigation