Log in

Modeling and optimization of the prediction of bio-oil yield using generalized approach with different biomass and reactor types

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Fourteen multivariate regression models were applied to model the bio-oil yield obtained by pyrolysis using different combinations of predictor variables. The data modeling was separated into the reactor regime: batch and continuous. For batch reactor, the Cubist model with the radial base function provided the best bio-oil prediction result with RMSEP of 0.92%, R2 of 0.99, and MAE of 0.73%. This better result was obtained using the process’s modeling variables, proximate composition, elemental composition, and lignocellulose biomass concentration. For continuous reactor, the best result was obtained with the Extremely Randomized Tree model applied to the complete set of predictors with RMSEP of 2.15%, R2 of 0.96, and MAE of 1.74%. Both models showed an outstanding performance for bio-oil yield prediction for batch and continuous reactors widely used in the chemical industry. The optimization analysis of the models showed that the batch reactor achieves a bio-oil yield as high as the fluidized bed reactor if operated under the right conditions. The PSO method used for the optimization found the global optimum for the defined analysis ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdullah N, Gerhauser H (2008) Bio-oil derived from empty fruit bunches. Fuel 87:2606–2613

    Article  CAS  Google Scholar 

  • Abnisa F, Arami-Niya A, Wan Daud WMA et al (2013) Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manag 76:1073–1082

    Article  CAS  Google Scholar 

  • Adusumilli S, Bhatt D, Wang H et al (2013) A low-cost INS/GPS integration methodology based on random forest regression. Expert Syst Appl 40:4653–4659

    Article  Google Scholar 

  • Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727

    Article  CAS  PubMed  Google Scholar 

  • Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev 16:5101–5109

    Article  CAS  Google Scholar 

  • Alexopoulos EC (2010) Introduction to multivariate regression analysis. Hippokratia 14:23–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alva JAV, Estrada EG (2009) A generalization of Shapiro-Wilk’s test for multivariate normality. Commun Stat - Theory Methods 38:1870–1883

    Article  Google Scholar 

  • Alvarez J, Amutio M, Lopez G et al (2015) Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor. Fuel 159:810–818

    Article  CAS  Google Scholar 

  • Andrade BM, Gois JS, Xavier VL, Luna AS (2020) Comparison of the performance of multiclass classifiers in chemical data: addressing the problem of overfitting with the permutation test. Chemom Intell Lab Syst 201:104013

    Article  Google Scholar 

  • Andrés J, Lorca P, De Cos Juez FJ, Sánchez-Lasheras F (2011) Bankruptcy forecasting: a hybrid approach using fuzzy c-means clustering and multivariate adaptive regression splines (MARS). Expert Syst Appl 38:1866–1875

    Article  Google Scholar 

  • Angin D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597

    Article  CAS  PubMed  Google Scholar 

  • Asadullah M, Rahman MA, Ali MM et al (2007) Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel 86:2514–2520

    Article  CAS  Google Scholar 

  • Asadullah M, Ab Rasid NS, Kadir SAS, Azdarpour A (2013) Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass Bioenerg 59:316–324

    Article  CAS  Google Scholar 

  • Ateş F, Pütün E, Pütün AE (2004) Fast pyrolysis of sesame stalk: Yields and structural analysis of bio-oil. J Anal Appl Pyrolysis 71:779–790

    Article  Google Scholar 

  • Bendtsen C (2012) PSO: particle swarm optimization. R package version 1.0.3. https://CRAN.R-project.org/package=pso

  • Biradar CH, Subramanian KA, Dastidar MG (2014) Production and fuel quality upgradation of pyrolytic bio-oil from Jatropha Curcas de-oiled seed cake. Fuel 119:81–89

    Article  CAS  Google Scholar 

  • Boehmke B, Greenwell BM (2019) Hands-on machine learning with R. CRC Press, Boca Raton

    Book  Google Scholar 

  • Boucher TF, Ozanne MV, Carmosino ML et al (2015) A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy. Spectrochim Acta Part B Spectrosc 107:1–10

    Article  CAS  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B 26:211–243

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    Article  CAS  Google Scholar 

  • Cao H, **n Y, Yuan Q (2016) Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresour Technol 202:158–164

    Article  CAS  PubMed  Google Scholar 

  • Casoni AI, Bidegain M, Cubitto MA et al (2015) Pyrolysis of sunflower seed hulls for obtaining bio-oils. Bioresour Technol 177:406–409

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang H, Song Y, **ao R (2018) Prediction of product distribution and bio-oil heating value of biomass fast pyrolysis. Chem Eng Process Process Intensif 130:36–42

    Article  CAS  Google Scholar 

  • Cutler A, Cutler DR, Stevens JR (2011) Random forests. Mach Learn 45:157–176

    Google Scholar 

  • Deiss L, Margenot AJ, Culman SW, Demyan MS (2020) Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma 365:114227

    Article  CAS  Google Scholar 

  • Djuris J, Ibric S, Djuric Z (2013) Chemometric methods application in pharmaceutical products and processes analysis and control. Computer-aided applications in pharmaceutical technology. Woodhead Publishing Limited, Sawston, pp 57–90

    Chapter  Google Scholar 

  • Ferre J (2009) Regression diagnostics. Comprehensive chemometrics. Elsevier, Oxford, pp 33–89

    Chapter  Google Scholar 

  • Filzmoser P, Gschwandtner M (2021) mvoutlier: multivariate outlier detection based on robust methods

  • Filzmoser P, Maronna R, Werner M (2007) Outlier identification in high dimensions. Comput Stat Data Anal 52:1694–1711

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptative regression splines. Ann Stat 19:1–141

    Google Scholar 

  • Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378

    Article  Google Scholar 

  • Fu P, Hu S, **ang J et al (2010) FTIR study of pyrolysis products evolving from typical agricultural residues. J Anal Appl Pyrolysis 88:117–123

    Article  CAS  Google Scholar 

  • Galvão RKH, Araujo MCU, José GE et al (2005) A method for calibration and validation subset partitioning. Talanta 67:736–740

    Article  PubMed  Google Scholar 

  • Garg R, Anand N, Kumar D (2016) Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization. Renew Energy 96:167–171

    Article  CAS  Google Scholar 

  • Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63:3–42

    Article  Google Scholar 

  • Gonzalez-Sanchez A, Frausto-Solis J, Ojeda-Bustamante W (2014) Predictive ability of machine learning methods for massive crop yield prediction. Span J Agric Res 12:313–328

    Article  Google Scholar 

  • Greenwell BM (2017) pdp: an R package for constructing partial dependence plots. R J 9:421–436

    Article  Google Scholar 

  • Greenwell B, Boehmke B, Cunningham J, Developers G (2020) GBM: generalized boosted regression models. R package version 2.1.8

  • Guedes RE, Luna AS, Torres AR (2018) Operating parameters for bio-oil production in biomass pyrolysis: a review. J Anal Appl Pyrolysis 129:134–149

    Article  CAS  Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  • Hallinan JS (2013) Computational intelligence in the design of synthetic microbial genetic systems. Methods Microbiol 40:1–37

    Article  CAS  Google Scholar 

  • Hastie T, Tibshiranit R, Friedman J (2008) The elements of statistical learning, 2a. Springer

    Google Scholar 

  • Hebbali A (2020) olsrr: tools for building OLS regression models, R package version 0.5.3

  • Henrickson K, Rodrigues F, Pereira FC (2019) Data preparation. Mobility patterns, big data and transport analytics. Elsevier, Oxford, pp 73–106

    Chapter  Google Scholar 

  • Heo HS, Park HJ, Dong JI et al (2010) Fast pyrolysis of rice husk under different reaction conditions. J Ind Eng Chem 16:27–31

    Article  CAS  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:69–82

    Article  Google Scholar 

  • Huang A-N, Hsu C-P, Hou B-R, Kuo H-P (2016) Production and separation of rice husk pyrolysis bio-oils from a fractional distillation column connected fluidized bed reactor. Powder Technol 323:588–593

    Article  Google Scholar 

  • Isahak WNRW, Hisham MWM, Yarmo MA, Yun Hin TY (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16:5910–5923

    Article  CAS  Google Scholar 

  • James G, Witten D, Hastie T, Tibshiranit R (2013) An introduction to statistical learning. Springer, New York

    Book  Google Scholar 

  • Jarek S (2012) mvnormtest: normality test for multivariate variables

  • Jung SH, Kang BS, Kim JS (2008) Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. J Anal Appl Pyrolysis 82:240–247

    Article  CAS  Google Scholar 

  • Kang H (2013) The prevention and handling of the missing data. Korean J Anesthesiol 64:402–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab—an S4 Package for Kernel Methods in R. J Stat Softw 11:1–20

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the international conference on neural networks. IEEE, pp 1942–1948

  • Kim SJ, Jung SH, Kim JS (2010) Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour Technol 101:9294–9300

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Koo BS, Ryu JW et al (2013) Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Process Technol 108:18–124

    Article  Google Scholar 

  • Kotu V, Deshpande B (2019) Anomaly detection. Data science. Elsevier, Oxford, pp 447–465

    Chapter  Google Scholar 

  • Koziel S, Yang X (2011) Computational optimization methods and algorthims. Springer, Berlin

    Book  Google Scholar 

  • Kuhn M (2020) caret: classification and regression training. R package version 6.0-86

  • Kuhn M (2021) caret: classification and regression training

  • Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

    Book  Google Scholar 

  • Kuhn M, Quinlan R (2020) Cubist: rule- and instance-based regression modeling. R package version 0.2.3

  • Landry M, Erlinger TP, Patschke D, Varrichio C (2016) Probabilistic gradient boosting machines for GEFCom2014 wind forecasting. Int J Forecast 32:1061–1066

    Article  Google Scholar 

  • Lee Y, Park J, Ryu C et al (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresour Technol 148:196–201

    Article  CAS  PubMed  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2:18–22

    Google Scholar 

  • Liu A, Yang MT (2012) A new hybrid nelder-mead particle swarm optimization for coordination optimization of directional overcurrent relays. Math Probl Eng 2012:1

    Article  Google Scholar 

  • Looney SW, Hagan JL (2007) Statistical methods for assessing biomarkers and analyzing biomarker data. Handb Stat 27:27–65

    Google Scholar 

  • Ly HV, Kim SS, Woo HC et al (2015) Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production. Energy 93:1436–1446

    Article  CAS  Google Scholar 

  • Martínez CM, Cao D (2019) Integrated energy management for electrified vehicles. Elsevier, Oxford

    Book  Google Scholar 

  • Mehdizadeh S, Behmanesh J, Khalili K (2017) Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput Electron Agric 139:103–114

    Article  Google Scholar 

  • Melkumova LE, Shatskikh SY (2017) Comparing ridge and LASSO estimators for data analysis. Procedia Eng 201:746–755

    Article  Google Scholar 

  • Merdun H, Sezgin IV (2018) Modelling of pyrolysis product yields by artificial neural networks. Int J Renew Energy Res 8:1178–1188

    Google Scholar 

  • Metcalf L, Casey W (2016) Introduction to data analysis. Cybersecurity applied mathematics. Elsevier, Oxford, pp 43–65

    Chapter  Google Scholar 

  • Milborrow SD from mda:mars by TH and RTUAMF utilities with TL leaps wrapper (2019) earth: multivariate adaptive regression splines. R package version 5.1.2

  • Mishra P, Pandey CM, Singh U et al (2019) Descriptive statistics and normality tests for statistical data. Ann Card Anaesth 22:67–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak S, Hubbard A, Sidney S, Syme SL (2018) A recursive partitioning approach to investigating correlates of self-rated health: The CARDIA Study. SSM Popul Heal 4:178–188

    Article  Google Scholar 

  • Omar R, Idris A, Yunus R et al (2011) Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel 90:1536–1544

    Article  CAS  Google Scholar 

  • Onay Ö, Beis SH, Koçkar ÖM (2001) Fast pyrolysis of rape seed in a well-swept fixed-bed reactor. J Anal Appl Pyrolysis 58–59:995–1007

    Article  Google Scholar 

  • Paenpong C, Pattiya A (2016) Effect of pyrolysis and moving-bed granular filter temperatures on the yield and properties of bio-oil from fast pyrolysis of biomass. J Anal Appl Pyrolysis 119:40–51

    Article  CAS  Google Scholar 

  • Pǎrpǎriţǎ E, Brebu M, Azhar Uddin M et al (2014) Pyrolysis behaviors of various biomasses. Polym Degrad Stab 100:1–9

    Article  Google Scholar 

  • Pattiya A, Suttibak S (2012) Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. J Anal Appl Pyrolysis 95:227–235

    Article  CAS  Google Scholar 

  • Pattiya A, Sukkasi S, Goodwin V (2012) Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor. Energy 44:1067–1077

    Article  CAS  Google Scholar 

  • Pütün AE, Apaydm E, Pütün E (2004) Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy 29:2171–2180

    Article  Google Scholar 

  • Qin SJ (1997) Neural networks for intelligent sensors and control—practical issues and some solutions. Neural systems for control. Elsevier, Oxford, pp 213–234

    Chapter  Google Scholar 

  • Qu T, Guo W, Shen L et al (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res 50:10424–10433

    Article  CAS  Google Scholar 

  • Quan C, Gao N, Song Q (2016) Pyrolysis of biomass components in a TGA and a fixed-bed reactor: thermochemical behaviors, kinetics, and product characterization. J Anal Appl Pyrolysis 121:84–92

    Article  CAS  Google Scholar 

  • Quinlan JR (1992) Learning with continuous classes. Aust Jt Conf Artif Intell 92:343–348

    Google Scholar 

  • Quinlan JR (1993) Combining instance-based and model-based learning. Mach Learn Proc 93:236–243

    Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. https://www.r-project.org/

  • Raja SA, Kennedy ZR, Pillai BC, Lee CLR (2010) Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor. Energy 35:2819–2823

    Article  CAS  Google Scholar 

  • Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis: a research tool, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Razali NM, Wah YB (2011) Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Stat Model Anal 2:21–33

    Google Scholar 

  • Razuan R, Chen Q, Zhang X et al (2010) Pyrolysis and combustion of oil palm stone and palm kernel cake in fixed-bed reactors. Bioresour Technol 101:4622–4629

    Article  CAS  PubMed  Google Scholar 

  • Rendall R, Pereira A, Reis M (2016) An extended comparison study of large scale datadriven prediction methods based on variable selection, latent variables, penalized regression and machine learning. Comput Aid Chem Eng 38:1629–1634

    Article  CAS  Google Scholar 

  • Serneels S, De Nolf E, Van Espen PJ (2006) Spatial sign preprocessing: a simple way to impart moderate robustness to multivariate estimators. J Chem Inf Model 46:1402–1409

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Sheth PN (2015) Thermo-chemical conversion of jatropha deoiled cake: pyrolysis vs. gasification. Int J Chem Eng Appl 6:376–380

    CAS  Google Scholar 

  • Sharma J, Giri C, Granmo OC, Goodwin M (2019) Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation. Eurasip J Inf Secur 2019:1

    Google Scholar 

  • Sousa SIV, Martins FG, Alvim-Ferraz MCM, Pereira MC (2007) Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ Model Softw 22:97–103

    Article  Google Scholar 

  • Stevens A, Ramirez-Lopez L (2021) An introduction to the prospectr package

  • Sulaiman F, Abdullah N (2011) Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy 36:2352–2359

    Article  CAS  Google Scholar 

  • Sun Y, Liu L, Wang Q et al (2016) Pyrolysis products from industrial waste biomass based on a neural network model. J Anal Appl Pyrolysis 120:94–102

    Article  CAS  Google Scholar 

  • Tang Q, Chen Y, Yang H et al (2020) Prediction of bio-oil yield and hydrogen contents based on machine learning method: effect of biomass compositions and pyrolysis conditions. Energy Fuels 34:11050–11060

    Article  CAS  Google Scholar 

  • Taşar Ş (2022) Estimation of pyrolysis liquid product yield and its hydrogen content for biomass resources by combined evaluation of pyrolysis conditions with proximate-ultimate analysis data: a machine learning application. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2022.105546

    Article  Google Scholar 

  • Therneau T, Atkinson B (2019) rpart: recursive partitioning and regression trees. R package version 4.1–15

  • Tibshiranit R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267–288

    Google Scholar 

  • Tsai WT, Lee MK, Chang YM (2007) Fast pyrolysis of rice husk: product yields and compositions. Bioresour Technol 98:22–28

    Article  CAS  PubMed  Google Scholar 

  • Ullah Z, Khan M, Raza Naqvi S et al (2021) A comparative study of machine learning methods for bio-oil yield prediction—a genetic algorithm-based features selection. Bioresour Technol 335:125292

    Article  CAS  PubMed  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Varma AK, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Ind Crops Prod 95:704–717

    Article  CAS  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Venderbosch RH, Prins W (2010) Fast pyrolysis technology development. Biofuels Bioprod Biorefining 4:178–208

    Article  CAS  Google Scholar 

  • Vittinghoff E, McCulloch CE, Glidden DV, Shiboski SC (2007) Linear and non-linear regression methods in epidemiology and biostatistics. Elsevier B.V., Oxford

    Book  Google Scholar 

  • Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40:1–29

    Article  Google Scholar 

  • Winters-Miner LA, Bolding PS, Hilbe JM et al (2015) Prediction in medicine—the data mining algorithms of predictive analytics. Practical predictive analytics and decisioning systems for medicine. Elsevier, Oxford, pp 239–259

    Chapter  Google Scholar 

  • Wu SR, Chang CC, Chang YH, Wan HP (2016) Comparison of oil-tea shell and Douglas-fir sawdust for the production of bio-oils and chars in a fluidized-bed fast pyrolysis system. Fuel 175:57–63

    Article  CAS  Google Scholar 

  • **ng J, Luo K, Wang H, Fan J (2019) Estimating biomass major chemical constituents from ultimate analysis using a random forest model. Bioresour Technol 288:121541

    Article  PubMed  Google Scholar 

  • Yang ZR, Yang Z (2014) Artificial neural networks. Compr Biomed Phys 6:1–17

    Google Scholar 

  • Yang K, Wu K, Zhang H (2022) Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions. Energy 254:124320. https://doi.org/10.1016/j.energy.2022.124320

    Article  CAS  Google Scholar 

  • Yap BW, Sim CH (2011) Comparisons of various types of normality tests. J Stat Comput Simul 81:2141–2155

    Article  Google Scholar 

  • Zhang W, Goh ATC (2014) Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci Front 7:1–8

    Google Scholar 

  • Zhang T, Cao D, Feng X et al (2022) Machine learning prediction of bio-oil characteristics quantitatively relating to biomass compositions and pyrolysis conditions. Fuel 312:122812. https://doi.org/10.1016/j.fuel.2021.122812

    Article  CAS  Google Scholar 

  • Zhou J, Shi X, Du K et al (2016) Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. Int J Geomech 17:04016129

    Article  Google Scholar 

  • Zhou J, Li E, Wei H et al (2019) Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl Sci 9:1–16

    Google Scholar 

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol 67:301–320

    Article  Google Scholar 

  • Zou H, Hastie T (2020) elasticnet: elastic-net for sparse estimation and sparse PCA. R package version 1.3

Download references

Acknowledgements

The authors are thankful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa no Rio de Janeiro (FAPERJ), and Universidade do Estado do Rio de Janeiro (Programa Pró-Ciência) for their financial support. ASL has research scholarships from UERJ (Programa Pró-Ciência), FAPERJ (Cientista de Nosso Estado), and CNPq, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aderval S. Luna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 482 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guedes, R.E., Torres, A.R. & Luna, A.S. Modeling and optimization of the prediction of bio-oil yield using generalized approach with different biomass and reactor types. Braz. J. Chem. Eng. (2023). https://doi.org/10.1007/s43153-023-00381-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43153-023-00381-4

Keywords

Navigation