Log in

A non-trivial solution for a p-Schrödinger–Kirchhoff-type integro-differential system by non-smooth techniques

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

We consider the integro-differential system \((\textrm{P}_m)\):

$$\begin{aligned} - \left( a_k+b_k \left( \displaystyle \int _{{\mathbb {R}}^{N}} |\nabla u_k|^{p} dx \right) ^{p-1} \right) \Delta _{p} u_k + V(x) |u_k|^{p-2} u_k = \partial _{k} F(u_1,\ldots ,u_m), \end{aligned}$$

where \(x\in {\mathbb {R}}^N\), \(a_k>0\), \(b_k\ge 0\), \(N\ge 2\) and \(1<p<N\), \(u_k \in \textrm{W}^{1,p}({\mathbb {R}}^{N})\), for \(k=1,\ldots ,m\). By \(\partial _{k} F(u_1,\ldots ,u_m),\) it is denoted the k-th partial generalized gradient in the sense of Clarke. The potential \(V\in \textrm{C} \left( {\mathbb {R}}^N \right) \) verifies \(\inf (V)>0\) and a coercivity property introduced by Bartsch et al. The coupling function \(F:{\mathbb {R}}^m\longrightarrow {\mathbb {R}}\) is locally Lipschitz and verifies conditions introduced by Duan and Huang. By applying tools from the non-smooth critical point theory, we prove the existence of a non-trivial mountain pass solution of \((\textrm{P}_m)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005). https://doi.org/10.1016/j.camwa.2005.01.008

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R} }^n\). Comm. Part. Differ. Equ. 20, 1725–1741 (1995). https://doi.org/10.1080/03605309508821149

    Article  MATH  Google Scholar 

  3. Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potencial well. Commun. Contemp. Math. 3, 549–569 (2021). https://doi.org/10.1142/S0219199701000494

    Article  MATH  Google Scholar 

  4. Bogachev, V.I.: Measure Theory. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-34514-5

    Book  MATH  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011). https://doi.org/10.1007/978-0-387-70914-7

    Book  MATH  Google Scholar 

  6. Carl, E.A.: Population control in artic ground squirrels. Ecology 52, 395–413 (1971). https://doi.org/10.2307/1937623

    Article  Google Scholar 

  7. Chang, K.C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981). https://doi.org/10.1016/0022-247X(81)90095-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, S.J., Li, L.: Multiple solutions for the nonhomogeneous Kirchhoff equation on \({\mathbb{R} }^{N}\). Nonlinear Anal. Real World Appl. 14, 1477–1486 (2013). https://doi.org/10.1016/j.nonrwa.2012.10.010

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C.Y., Kuo, Y., Wu, T.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011). https://doi.org/10.1016/j.jde.2010.11.017

    Article  MathSciNet  MATH  Google Scholar 

  10. Chipot, M., Lovat, B.: Some remarks on non-local elliptic and parabolic problems. Nonlinear Anal. 30, 4619–4627 (1997). https://doi.org/10.1016/S0362-546X(97)00169-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Chipot, M., Rodriguez, J.F.: On a class of nonlocal nonlinear elliptic problems. Math. Model. Numer. Anal. 26, 447–468 (1992). https://doi.org/10.1051/m2an/1992260304471

    Article  MathSciNet  MATH  Google Scholar 

  12. Clarke, F.H.: Nonsmooth Analysis and Optimization. Wiley, New York (1983). https://doi.org/10.1137/1.9781611971309

    Book  MATH  Google Scholar 

  13. Conway, E.D., Smoller, J.A.: Diffusion and the predator-prey interaction. SIAM J. Appl. Math. 33, 673-686 (1977). https://www.jstor.org/stable/2100760

  14. Corrêa, F.J.S.A.: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. 59, 1147–1155 (2004). https://doi.org/10.1016/j.na.2004.08.010

    Article  MathSciNet  MATH  Google Scholar 

  15. Duan, L., Huang, L.: Existence of nontrivial solutions for Kirchhoff-type variational inclusion system in \({\mathbb{R} }\). Appl. Math. Comput. 235, 174–186 (2014). https://doi.org/10.1016/j.amc.2014.02.070

    Article  MathSciNet  MATH  Google Scholar 

  16. Duan, L., Huang, L.: Infinitely many solutions for sublinear Schrödinger Kirchhoff type equations with general potentials. Results Math. 66, 181–197 (2014). https://doi.org/10.1007/s00025-014-0371-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Drummond, P., Hillery, M.: The Quantum Theory of Nonlinear Optics. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9780511783616

    Book  MATH  Google Scholar 

  18. Gasinski, L., Papageorgiou, N.S.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman & Hall/CRC, London (2004). https://doi.org/10.1201/9780367801632

    Book  MATH  Google Scholar 

  19. Glitzky, A., Liero, M., Nika, G.: Analysis of a hybrid model for the electro-thermal behavior of semiconductor heterostructures. J. Math. Anal. Appl. 507, 125815 (2022). https://doi.org/10.1016/j.jmaa.2021.125815

    Article  MathSciNet  MATH  Google Scholar 

  20. Glitzky, A., Liero, M., Nika, G.: An existence result for a class of electrothermal drift-diffusion models with Gauss-Fermi statistics for organic semiconductors. Anal. Appl. (Singap.) 19, 275–304 (2021). https://doi.org/10.1142/S0219530519500246

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurney, W.S.C., Nisbet, R.M.: The regulation of inhomogeneous population. J. Theor. Biol. 52, 441–457 (1975). https://doi.org/10.1016/0022-5193(75)90011-9

    Article  Google Scholar 

  22. Gurtin, M., McCamy, R.C.: On the diffusiion of biological populations. Math. Biosci. 33, 35–49 (1977). https://doi.org/10.1016/0025-5564(77)90062-1

    Article  MathSciNet  Google Scholar 

  23. He, X., Zou, W.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009). https://doi.org/10.1016/j.na.2008.02.021

    Article  MathSciNet  MATH  Google Scholar 

  24. Kirchhoff, G.: Vorlesungen uber Matematische Physik (vol. 1), pp. 316–320. Mechanik, Druck Und Verlag Von GB Teubner, Leipzig (1883)

  25. Kourogenis, N.C., Papageorgiou, N.S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. Kodai Math. J. 23, 108–135 (2000). https://doi.org/10.2996/kmj/1138044160

    Article  MathSciNet  MATH  Google Scholar 

  26. Lindqvist, P.: Notes on the Stationary \(p\)-Laplace Equation. Springer, Berlin (2017). https://doi.org/10.1007/978-3-030-14501-9

    Book  MATH  Google Scholar 

  27. Maynard-Smith, J.: Models in Ecology. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  28. Mayorga-Zambrano, J., Murillo-Tobar, J., Macancela-Bojorque, A.: Multiplicity of solutions for a \(p\)-Schrödinger-Kirchhoff-type integro-differential equation. Ann. Funct. Anal. 14, 33 (2023). https://doi.org/10.1007/s43034-023-00257-1

    Article  MATH  Google Scholar 

  29. Meystre, P.: Atom Optics. Springer, New-York (2001). https://doi.org/10.1063/1.1535011

    Book  MATH  Google Scholar 

  30. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951). https://doi.org/10.1016/S0092-8240(05)80044-8

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012). https://doi.org/10.1016/j.jde.2012.05.023

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \({\mathbb{R} }^{N}\). Nonlinear Anal. Real World Appl. 12, 1278–1287 (2011). https://doi.org/10.1016/j.nonrwa.2010.09.023

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank to the anonymous referee for his / her important comments that helped to improve the document.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Mayorga-Zambrano.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Communicated by Klaus Guerlebeck.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayorga-Zambrano, J., Narváez-Vaca, D. A non-trivial solution for a p-Schrödinger–Kirchhoff-type integro-differential system by non-smooth techniques. Ann. Funct. Anal. 14, 77 (2023). https://doi.org/10.1007/s43034-023-00299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-023-00299-5

Keywords

Mathematics Subject Classification

Navigation