Log in

Exploring the Influence of Fetal Sex on Heart Rate Dynamics Using Fetal Magnetocardiographic Recordings

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Fetal sex has been associated with different development trajectories that cause structural and functional differences between the sexes throughout gestation. Fetal magnetocardiography (fMCG) recordings from 123 participants (64 females and 59 males; one recording/participant) from a database consisting of low-risk pregnant women were analyzed to explore and compare fetal development trajectories of both sexes. The gestational age of the recordings ranged from 28 to 38 weeks. Linear metrics in both the time and frequency domains were applied to study fetal heart rate variability (fHRV) measures that reveal the dynamics of short- and long-term variability. Rates of linear change with GA in these metrics were analyzed using general linear model regressions with assessments for significantly different variances and GA regression slopes between the sexes. The fetal sexes were well balanced for GA and sleep state. None of the fHRV measures analyzed exhibited significant variance heterogeneity between the sexes, and none of them exhibited a significant sex-by-GA interaction. The absence of a statistically significant sex-by-GA interaction on all parameters resulted in none of the regression slope estimates being significantly different between the sexes. With high-precision fMCG recordings, we were able to explore the variation in fHRV parameters as it relates to fetal sex. The fMCG-based fHRV parameters did not show any significant difference in rates of change with gestational age between sexes. This study provides a framework for understanding normal development of the fetal autonomic nervous system, especially in the context of fetal sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The de-identified data will be available per request in adherence to institutional policies.

References

  1. Serra V, Bellver J, Moulden M, Redman CWG. Computerized analysis of normal fetal heart rate pattern throughout gestation. Ultrasound Obstet Gynecol. 2009;34:74–9.

    Article  CAS  PubMed  Google Scholar 

  2. DiPietro J, Voegtline K. The gestational foundation of sex differences in development and vulnerability. Neuroscience. 2017;342:4–20.

    Article  CAS  PubMed  Google Scholar 

  3. Spyridou K, Chouvarda I, Hadjileontiadis L, Maglaveras N. Linear and nonlinear features of fetal heart rate on the assessment of fetal development in the course of pregnancy and the impact of fetal gender. Physiol Meas. 2018;39:015007.

    Article  CAS  PubMed  Google Scholar 

  4. Gierałtowski J, Hoyer D, Tetschke F, Nowack S, Schneider U, Żebrowski J. Development of multiscale complexity and multifractality of fetal heart rate variability. Auton Neurosci. 2013;178:29–36.

    Article  PubMed  Google Scholar 

  5. Groome LJ, Mooney DM, Holland SB, Smith LA, Atterbury JL, Dykman RA. Behavioral state affects heart rate response to low-intensity sound in human fetuses. Early Hum Dev. 1999;54:39–54.

    Article  CAS  PubMed  Google Scholar 

  6. Buss C, Davis EP, Class QA, Gierczak M, Pattillo C, Glynn LM, Sandman CA. Maturation of the human fetal startle response: evidence for sex-specific maturation of the human fetus. Early Hum Dev. 2009;85:633–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dawes NW, Dawes GS, Redman CW. Fetal heart rate patterns in term labor vary with sex, gestational age, epidural analgesia, and fetal weight. Am J Obstet Gynecol. 1999;180:181–7.

    Article  CAS  PubMed  Google Scholar 

  8. Fleisher LA, Dipietro JA, Johnson TRB, Pincus S. Complementary and non-coincident increases in heart rate variability and irregularity during fetal development. Clin Sci. 1997;92:345–9.

    Article  CAS  Google Scholar 

  9. Pressman EK, DiPietro JA, Costigan KA, Shupe AK, Johnson TRB. Fetal neurobehavioral development: associations with socioeconomic class and fetal sex. Dev Psychobiol. 1998;33:79–91.

    Article  PubMed  Google Scholar 

  10. Bernardes J, Gonçalves H, Ayres-de-Campos D, Rocha AP. Linear and complex heart rate dynamics vary with sex in relation to fetal behavioural states. Early Hum Dev. 2008;84:433–9.

    Article  PubMed  Google Scholar 

  11. Bernardes J, Gonçalves H, Ayres-de-Campos D, Rocha AP. Sex differences in linear and complex fetal heart rate dynamics of normal and acidemic fetuses in the minutes preceding delivery. J Perinat Med. 2009;37:168–76.

    Article  PubMed  Google Scholar 

  12. McKenna D, Ventolini G, Neiger R, Downing C. Gender-related differences in fetal heart rate during first trimester. Fetal Diagn Ther. 2006;21:144–7.

    Article  CAS  PubMed  Google Scholar 

  13. Neiger R, Ventolini G, McKenna D, Sonek J, Croom C. The myth of sex-dependent differences in fetal heart rate. In: Obstetrics and Gynecology: Lippincott Williams & Wilkins 530 WALNUT ST. PHILADELPHIA, PA 19106-3621 USA; 2004. p. 31S.

    Google Scholar 

  14. DiPietro JA, Caulfield LE, Costigan KA, Merialdi M, Nguyen RH, Zavaleta N, Gurewitsch ED. Fetal neurobehavioral development: a tale of two cities. Dev Psychol. 2004;40:445–55.

    Article  PubMed  Google Scholar 

  15. Ogueh O, Steer P. Gender does not affect fetal heart rate variation. BJOG: Int J Obstet Gynaecol. 1998;105:1312–4.

    Article  Google Scholar 

  16. Lange S, Van Leeuwen P, Geue D, Hatzmann W, Grönemeyer D. Influence of gestational age, heart rate, gender and time of day on fetal heart rate variability. Med Biol Eng Comput. 2005;43:481–6.

    Article  CAS  PubMed  Google Scholar 

  17. Gonçalves H, Amorim-Costa C, Ayres-de-Campos D, Bernardes J. Gender-specific evolution of fetal heart rate variability throughout gestation: a study of 8823 cases. Early Hum Dev. 2017;115:38–45.

    Article  PubMed  Google Scholar 

  18. DiPietro JA, Costigan KA, Voegtline KM. Studies in fetal behavior: revisited, renewed, and reimagined. Monogr Soc Res Child Dev. 2015;80:vii.

    PubMed Central  Google Scholar 

  19. Shuffrey LC, Myers MM, Odendaal HJ, Elliott AJ, du Plessis C, Groenewald C, Burd L, Angal J, Nugent JD, Isler JR. Fetal heart rate, heart rate variability, and heart rate/movement coupling in the Safe Passage Study. J Perinatol. 2019;39:608–18.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bhide A, Acharya G. Sex differences in fetal heart rate and variability assessed by antenatal computerized cardiotocography. Acta Obstet Gynecol Scand. 2018;97:1486–90.

    Article  CAS  PubMed  Google Scholar 

  21. Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310.

    Article  PubMed  Google Scholar 

  22. Nagy E, Orvos H, Bárdos G, Molnár P. Gender-related heart rate differences in human neonates. Pediatr Res. 2000;47:778–80.

    Article  CAS  PubMed  Google Scholar 

  23. Nagy E, Kompagne H, Orvos H, Pal A. Gender-related differences in neonatal imitation. Infant Child Dev: Int J Res Pract. 2007;16:267–76.

    Article  Google Scholar 

  24. Javorka K, Javorka M, Tonhajzerova I, Calkovska A, Lehotska Z, Bukovinska Z, Zibolen M. Determinants of heart rate in newborns. Acta Med Martiniana. 2011;11:7–16.

    Google Scholar 

  25. Javorka K, Lehotska Z, Kozar M, Uhrikova Z, Kolarovszki B, Javorka M, Zibolen M. Heart rate variability in newborns. Physiol Res. 2017;66(Suppl 2):S203–14.

    Article  CAS  PubMed  Google Scholar 

  26. Bonnemeier H, Wiegand UK, Brandes A, Kluge N, Katus HA, Richardt G, Potratz J. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol. 2003;14:791–9.

    Article  PubMed  Google Scholar 

  27. Schneider U, Schleussner E, Fiedler A, Jaekel S, Liehr M, Haueisen J, Hoyer D. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system. Physiol Meas. 2009;30:215–26.

    Article  CAS  PubMed  Google Scholar 

  28. Schneider U, Bode F, Schmidt A, Nowack S, Rudolph A, Doelcker E-M, Schlattmann P, Götz T, Hoyer D. Developmental milestones of the autonomic nervous system revealed via longitudinal monitoring of fetal heart rate variability. PLoS One. 2018;13:e0200799.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dietz P, Watson ED, Sattler MC, Ruf W, Titze S, van Poppel M. The influence of physical activity during pregnancy on maternal, fetal or infant heart rate variability: a systematic review. BMC Pregnancy Childbirth. 2016;16:1–15.

    Article  Google Scholar 

  30. Hoyer D, Heinicke E, Jaekel S, Tetschke F, Paolo DDP, Haueisen J, Schleußner E, Schneider U. Indices of fetal development derived from heart rate patterns. Early Hum Dev. 2009;85:379–86.

    Article  PubMed  Google Scholar 

  31. Govindan RB, Lowery CL, Campbell JQ, Best TH, Murphy P, Preissl HT, Eswaran H. Early maturation of sinus rhythm dynamics in high-risk fetuses. Am J Obstet Gynecol. 2007;196:572.

    Article  Google Scholar 

  32. Romano M, Iuppariello L, Ponsiglione AM, Improta G, Bifulco P, Cesarelli M. Frequency and time domain analysis of foetal heart rate variability with traditional indexes: a critical survey. Comput Math Methods Med. 2016;2016:1–12.

    Article  Google Scholar 

  33. Van Laar J, Porath MM, Peters C, Oei S. Spectral analysis of fetal heart rate variability for fetal surveillance: review of the literature. Acta Obstet Gynecol Scand. 2008;87:300–6.

    Article  PubMed  Google Scholar 

  34. Gustafson KM, Allen JJ, Yeh H-W, May LE. Characterization of the fetal diaphragmatic magnetomyogram and the effect of breathing movements on cardiac metrics of rate and variability. Early Hum Dev. 2011;87:467–75.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gustafson KM, May LE, Yeh H-W, Million SK, Allen JJ. Fetal cardiac autonomic control during breathing and non-breathing epochs: the effect of maternal exercise. Early Hum Dev. 2012;88:539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gustafson KM, Popescu EA (2016) Fetal assessment using biomagnetometry: neurobehaviors, cardiac autonomic control, and research applications. In: Reissland N, Kisilevsky B (eds) Fetal Development. Springer, Cham. https://doi.org/10.1007/978-3-319-22023-9_23.

  37. David M, Hirsch M, Karin J, Toledo E, Akselrod S. An estimate of fetal autonomic state by time-frequency analysis of fetal heart rate variability. J Appl Physiol. 1985;2007(102):1057–64.

    Google Scholar 

  38. Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, Coumel P, Fallen EL, Kennedy HL, Kleiger RE. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  39. DiPietro JA, Hodgson DM, Costigan KA, Hilton SC, Johnson TR. Development of fetal movement—fetal heart rate coupling from 20 weeks through term. Early Hum Dev. 1996;44:139–51.

    Article  CAS  PubMed  Google Scholar 

  40. Kim KN, Park Y-S, Hoh J-K. Sex-related differences in the development of fetal heart rate dynamics. Early Hum Dev. 2016;93:47–55.

    Article  PubMed  Google Scholar 

  41. Hirsch M, Karin J, Akselrod S. In: Malik M, Camm AJ, editors. Heart rate variability in the fetus Heart Rate Variability. New York: Futura Publishing Company; 1995.

    Google Scholar 

  42. Huhn EA, Müller MI, Meyer AH, Manegold-Brauer G, Holzgreve W, Hoesli I, Wilhelm FH. Quality predictors of abdominal fetal electrocardiography recording in antenatal ambulatory and bedside settings. Fetal Diagn Ther. 2017;41:283–92.

    Article  PubMed  Google Scholar 

  43. Reinhard J, Hayes-Gill BR, Schiermeier S, Hatzmann H, Heinrich TM, Louwen F. Intrapartum heart rate ambiguity: a comparison of cardiotocogram and abdominal fetal electrocardiogram with maternal electrocardiogram. Gynecol Obstet Invest. 2013;75:101–8.

    Article  PubMed  Google Scholar 

  44. Graatsma E, Jacod B, Van Egmond L, Mulder E, Visser G. Fetal electrocardiography: feasibility of long-term fetal heart rate recordings. BJOG: Int J Obstet Gynaecol. 2009;116:334–8.

    Article  CAS  Google Scholar 

  45. Graatsma EM, Miller J, Mulder EJ, Harman C, Baschat AA, Visser GH. Maternal body mass index does not affect performance of fetal electrocardiography. Am J Perinatol. 2010;27(7):573–7.

    Article  PubMed  Google Scholar 

  46. Cohen WR, Hayes-Gill B. Influence of maternal body mass index on accuracy and reliability of external fetal monitoring techniques. Acta Obstet Gynecol Scand. 2014;93:590–5.

    Article  PubMed  Google Scholar 

  47. Quinn A, Weir A, Shahani U, Bain R, Maas P, Donaldson G. Antenatal fetal magnetocardiography: a new method for fetal surveillance? BJOG: Int J Obstet Gynaecol. 1994;101:866–70.

    Article  CAS  Google Scholar 

  48. Oostendorp T, Van Oosterom A. Modelling the fetal magnetocardiogram. Clin Phys Physiol Meas. 1991;12:15.

    Article  PubMed  Google Scholar 

  49. Lowery CL, Govindan RB, Murphy P, Eswaran H. Assessing cardiac and neurological maturation during the intrauterine period. Semin Perinatol. 2008;32:263–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Van Leeuwen P. Fetal magnetocardiography. Herzschrittmachertherapie und Elektrophysiol. 1997;8:184–94.

    Article  Google Scholar 

  51. Crowe J, Herbert J, Huang X, Reed N, Woolfson M, Rassi D, Zhuravlev Y, Emery S. Sequential recording of the abdominal fetal electrocardiogram and magnetocardiogram. Physiol Meas. 1995;16:43.

    Article  CAS  PubMed  Google Scholar 

  52. Vrba J, Robinson SE, McCubbin J, Lowery CL, Eswaran H, Wilson JD, Murphy P, Preissl H. Fetal MEG redistribution by projection operators. IEEE Trans Biomed Eng. 2004;51:1207–18.

    Article  PubMed  Google Scholar 

  53. Ulusar UD, Govindan RB, Wilson JD, Lowery CL, Preissl H, Eswaran H. Adaptive rule based fetal QRS complex detection using Hilbert transform. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4666–9.

    PubMed Central  Google Scholar 

  54. Nijhuis J, Prechtl HF, Martin CB Jr, Bots R. Are there behavioural states in the human fetus? Early Hum Dev. 1982;6:177–95.

    Article  CAS  PubMed  Google Scholar 

  55. Maeda K, Tatsumura M, Utsu M. Analysis of fetal movements by Doppler actocardiogram and fetal B-mode imaging. Clin Perinatol. 1999;26:829–51.

    Article  CAS  PubMed  Google Scholar 

  56. Govindan RB, Vairavan S, Ulusar UD, Wilson JD, McKelvey SS, Preissl H, Eswaran H. A novel approach to track fetal movement using multi-sensor magnetocardiographic recordings. Ann Biomed Eng. 2011;39:964–72.

    Article  CAS  PubMed  Google Scholar 

  57. Vairavan S, Ulusar UD, Eswaran H, Preissl H, Wilson JD, McKelvey SS, Lowery CL, Govindan RB. A computer-aided approach to detect the fetal behavioral states using multi-sensor magnetocardiographic recordings. Comput Biol Med. 2016;69:44–51.

    Article  CAS  PubMed  Google Scholar 

  58. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4:26.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to acknowledge Ms. Heather Moody’s contribution to recruitment, consenting and data collection.

Funding

The SARA device was designed and built with a grant funded through National Institutes of Health (NIH) R01 NS036277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Eswaran.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the University of Arkansas for Medical Sciences Institutional Review Board (UAMS IRB #06456). All the participants received guidance on the study procedures and provided a written informed consent to participate. The study was carried out in accordance with relevant guidelines and regulations (Declaration of Helsinki).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• With high-precision fetal magnetocardiographic recordings, we were able to explore the variation in fHRV parameters as it relates to fetal sex.

• None of fMEG-based fHRV parameters exhibited significantly different rates of change with gestational age between sexes.

• The results of the study provide a framework for understanding normal development of the fetal autonomic nervous system, especially in the context of fetal sex.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercado, L., Escalona-Vargas, D., Siegel, E.R. et al. Exploring the Influence of Fetal Sex on Heart Rate Dynamics Using Fetal Magnetocardiographic Recordings. Reprod. Sci. 31, 823–831 (2024). https://doi.org/10.1007/s43032-023-01384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01384-9

Keywords

Navigation