Log in

In Vitro Study on Spermicidal Action of Hydro-methanol Extract of Tinospora cordifolia (Willd.) Stem in Rat and Human Sperm: a Comparative Analysis

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Human fertility regulation is a major way to control overpopulation. In this perspective, this study emphasized the in vitro effect of hydro-methanol extract of Tinospora cordifolia (TCHME) stem for spermicidal and reproductive hypo-functions using human and rat samples. Control, 0.5-, 1-, and 2-mg TCHME-charged groups were considered to assess the relevant parameters. Levels of spermiological parameters like sperm motility, viability, the integrity of plasma and acrosomal membrane, and nuclear chromatin decondensation were significantly reduced (p < 0.05) in the dose- and duration-dependent TCHME-charged groups compared to the control. The inhibitory concentration 50 (IC50) of TCHME on motile human and rat sperms were 0.8 and 0.4 mg/ml, respectively. Testicular androgenic key enzymes and antioxidant enzymes (human sperm pellet, testes, and epididymis of rat)’ activities were significantly diminished (p < 0.05), while antioxidant enzymes’ activities were significantly elevated (p < 0.05) in renal and insignificantly (p > 0.05) elevated in hepatic tissues of rat in TCHME-charged groups compared to the control. Significant elevation (p < 0.05) of thiobarbituric acid reactive substances (TBARS)’ level in human sperm pellet, testes, and epididymis of rats and significant diminution (p < 0.05) in TBARS levels of liver and kidney were observed in TCHME-charged groups. It focused that TCHME is more potent for stress imposition on reproductive tissues and sperm compared to the other tested tissues. Non-significant alterations (p > 0.05) in glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities in the said organs of rat indicated its non-toxic effect. It highlighted that TCHME possesses spermicidal and reproductive tissue-specific effects which strengthen the possibilities of male contraceptive development from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Authors can show the data of the study if there is any valid request from the editorial board of the journal.

Code Availability

Software Origin Lab, Version 8.5 for Windows 10.

References

  1. Chappell BT, Brooke LG, Brandon H. Mechanisms of action of currently available woman-controlled, vaginally administered, non-hormonal contraceptive products. Ther Adv Reprod Health. 2022;16:1–6. https://doi.org/10.1177/11795581211107120.

    Article  Google Scholar 

  2. Xu M, Zhao M, Li RHW, Lin Z, Chung JPW, Li TC, Lee TL, Chan DYL. Effects of nonoxynol-9 (N-9) on sperm functions: systematic review and meta-analysis. Reprod Fertil. 2022;3(1):R19–33. https://doi.org/10.1530/RAF-21-0024.

    Article  PubMed  PubMed Central  Google Scholar 

  3. D’Cruz OJ, Erbeck D, Uckun FM. A study of the potential of the pig as a model for the vaginal irritancy of benzalkonium chloride in comparison to the nonirritant microbicide PHI-443 and the spermicide vanadocene dithiocarbamate. Toxicol Pathol. 2005;33(4):465–76. https://doi.org/10.1080/01926230590959866.

    Article  CAS  PubMed  Google Scholar 

  4. Ghaffarilaleh V, Fisher D, Henkel R. Carica papaya seed extract slows human sperm. J Ethnopharmacol. 2019;241:111972. https://doi.org/10.1016/j.jep.2019.111972.

    Article  CAS  PubMed  Google Scholar 

  5. Sharma SK, SaiRam M, Ilavazhagan G, Devendra K, Shivaji SS, Selvamurthy W. Mechanism of action of NIM-76: a novel vaginal contraceptive from neem oil. Contraception. 1996;54(6):373–8. https://doi.org/10.1016/s0010-7824(96)00204-1.

    Article  CAS  PubMed  Google Scholar 

  6. Paul D, De D, Ali KM, Chatterjee K, Nandi DK, Ghosh D. Comparative study on the spermicidal activity of organic solvent fractions from hydroethanolic extracts of Achyranthes aspera and Stephania hernandifolia in human and rat sperm. Contraception. 2010;81(4):355–61. https://doi.org/10.1016/j.contraception.2009.09.001.

    Article  PubMed  Google Scholar 

  7. Anand AK, Prasad V, Alam M. Herbal or modern methods of contraception! Choice is yours. Int J Reprod Contracept Obstet Gynecol. 2015;4(4):947–53. https://doi.org/10.18203/2320-1770.ijrcog20150405.

    Article  Google Scholar 

  8. UN Population Division. World population prospects 2019. In: Department of Economic and Social Affairs. 2019. Retrieved from http://www.ncbi.nlm. nih.gov/pubmed/12283219. Accessed 04.09.2022.

  9. Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013:1–25. https://doi.org/10.1155/2013/627375.

    Article  Google Scholar 

  10. Bhatt N, Deshpande M. A Critical review and scientific prospective on contraceptive therapeutics from ayurveda and allied ancient knowledge. Front Pharmacol. 2021;12:629591. https://doi.org/10.3389/fphar.2021.629591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Upadhyay AK, Kumar K, Kumar A, Mishra HS. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) – validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2010;1(2):112–21. https://doi.org/10.4103/0974-7788.64405.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gupta RS, Sharma A. Antifertility effect of Tinospora cordifolia (Willd.) stem extract in male rats. Indian J Exp Biol. 2003;41(8):885–9.

    CAS  PubMed  Google Scholar 

  13. Chaudhury K, Bhattacharyya AK, Guha SK. Studies on the membrane integrity of human sperm treated with a new injectable male contraceptive. Hum Reprod. 2004;19(8):1826–30. https://doi.org/10.1093/humrep/deh332.

    Article  CAS  PubMed  Google Scholar 

  14. Zemjanis R. Diagnostic and therapeutic techniques in animal reproduction. 2nd ed. Baltimore: the Williams & Wilkins Company; 1970. p. 88–96.

    Google Scholar 

  15. Ratnasooriya WD, Amarasekera AS, Perera NSD, Premakumara GAS. Sperm antimotility properties of a seed extract of Abrus precatorius. J Ethnopharmacol. 1991;33(1-2):85–90. https://doi.org/10.1016/0378-8741(91)90166-B.

    Article  CAS  PubMed  Google Scholar 

  16. World Health Organization. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 5th ed. Geneva: World Health Organization press. New York, NY: Cambridge University Press; 2010. p. 7–271.

    Google Scholar 

  17. Jeyendran RS, Van der Ven HH, Perez-Pelaez M, Crabo BG, Zaneveld LJ. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Reproduction. 1984;70(1):219–28. https://doi.org/10.1530/jrf.0.0700219.

    Article  CAS  Google Scholar 

  18. Gopalkrishnan K. Standardized procedures in human semen analysis. Curr Sci. 1995;68(4):353–62. https://www.jstor.org/stable/24096433

    Google Scholar 

  19. Gopalkrishnan K, Hinduja IN, Anand Kumar TC. In vitro decondensation of nuclear chromatin of human spermatozoa: assessing fertilizing potential. Arch Androl. 1991;27(1):43–50. https://doi.org/10.3109/01485019108987650.

    Article  CAS  PubMed  Google Scholar 

  20. Jarabak J, Adams JA, Williams-Ashman HG, Talalay P. Purification of 17β-hydroxysteroid dehydrogenase of human placenta and studies on its trans dehydrogenase function. J Biol Chem. 1962;237(2):345–57.

    Article  CAS  PubMed  Google Scholar 

  21. Talalay P. Hydroxysteroid dehydrogenase. In: Colowic S, editor. Methods in Enzymology. New York, NY: Academic Press; 1962. p. 512–6.

    Google Scholar 

  22. Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  23. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x.

    Article  CAS  PubMed  Google Scholar 

  24. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8. https://doi.org/10.1016/0003-2697(79)90738-3.

    Article  CAS  PubMed  Google Scholar 

  25. Jagadeesan G, Kavitha AV. Recovery of phosphatase and transaminase activity of mercury intoxicated Mus musculus (Linn.) liver tissue by Tribulus terrestris (Linn.) (Zygophyllaceae) extract. Trop Biomed. 2006;23(1):45–51.

    CAS  PubMed  Google Scholar 

  26. Hossain MA, KAS AL-R, ZH AL-M, Weli AM, Al-Riyami Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed. 2013;3(9):705–10. https://doi.org/10.1016/S2221-1691(13)60142-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gauri SS, Mandal SM, Atta S, Dey S, Pati BR. Novel route of tannic acid biotransformation and their effect on major biopolymer synthesis in Azotobacter sp. SSB81. J App Microbiol. 2013;114(1):84–95. https://doi.org/10.1111/jam.12030.

    Article  CAS  Google Scholar 

  28. Li M, Wang H, Huan X, Cao N, Guan H, Zhang H, Cheng X, Wang C. Simultaneous LC-MS/MS bioanalysis of alkaloids, terpenoids, and flavonoids in rat plasma through salting-out-assisted liquid-liquid extraction after oral administration of extract from Tetradium ruticarpum and Glycyrrhiza uralensis: A sample preparation strategy to broaden analyte coverage of herbal medicines. Anal Bioanal Chem. 2021;2021(413):5871–84. https://doi.org/10.1007/s00216-021-03568-1.

    Article  CAS  Google Scholar 

  29. Chan PJ, Corselli JU, Jacobson JD, Patton WC, King A. Spermac stain analysis of human sperm acrosomes. Fertil Steril. 1999;72(1):124–8. https://doi.org/10.1016/s00150282(99)00201-0.

    Article  CAS  PubMed  Google Scholar 

  30. Bajpai V, Singh A, Chandra P, Negi MPS, Kumar N, Kumar B. Analysis of phytochemical variations in dioecious Tinospora cordifolia stems using HPLC/QTOF MS/MS and UPLC/QqQLIT-MS/MS. Phytochem Anal. 2016;27(2):92–9. https://doi.org/10.1002/pca.2601.

    Article  CAS  PubMed  Google Scholar 

  31. Goufo P, Singh RK, Cortez I. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants. 2020;9(5):398. https://doi.org/10.3390/antiox9050398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sefrioui MR, El Othmani IS, Filali H, Derfoufi S, Derraji S, Benmoussa A, Said AAH. Evaluation of spermicidal activity of saponosides from Saponaria officinalis/Caryophyllaceae, Glycyrrhizia glabra/Fabaceae and Herniaria glabra/Caryophyllaceae. Med Pharm Rep. 2021;94(2):239–47. https://doi.org/10.15386/mpr-1879.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Okon UA, Etim BN. Citrus aurantifolia impairs fertility facilitators and indices in male albino wistar rats. Int J Reprod Contracept Obstet Gynecol. 2014;3(3):640–6. https://doi.org/10.5455/2320-1770.ijrcog20140949.

    Article  Google Scholar 

  34. Davila MP, Muñoz PM, Bolaños JG, Stout TAE, Gadella BM, Tapia JA, Silva CB, Ferrusola CO, Pena FJ. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation. Reproduction. 2016;152(6):683–94. https://doi.org/10.1530/REP-16-0409.

    Article  CAS  PubMed  Google Scholar 

  35. Bennison C, Hemmings N, Brookes L, Slate J, Birkhead T. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird. Proc Biol Sci. 2016;283(1837):20161558. https://doi.org/10.1098/rspb.2016.1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castellini C, D’Andrea S, Cordeschi G, Totaro M, Parisi A, Di Emidio G, Tatone C, Francavilla S, Barbonetti A. Pathophysiology of mitochondrial dysfunction in human spermatozoa: focus on energetic metabolism, oxidative stress and apoptosis. Antioxidants. 2021;10(5):695. https://doi.org/10.3390/antiox10050695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walczak–Jedrzejowska R, Wolski JK, Slowikowska–Hilczer J. The role of oxidative stress and antioxidants in male fertility. Cent European J Urol. 2013;66(1):60–7. https://doi.org/10.5173/ceju.2013.01.art19.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22(9):1–21. https://doi.org/10.3390/ijms022094642.

    Article  Google Scholar 

  39. Shan S, Xu F, Hirschfeld M, Brenig B. Sperm lipid markers of male fertility in mammals. Int J Mol Sci. 2021;22(16):1–21. https://doi.org/10.3390/ijms22168767.

    Article  CAS  Google Scholar 

  40. Chakrabarti K, Pal S, Bhattacharyya AK. Sperm immobilization activity of Allium sativum L. and other plant extracts. Asian J Androl. 2003;5(2):131–6.

    PubMed  Google Scholar 

  41. Ribas-Maynou J, Garcia-Bonavila E, Hidalgo CO, Catalán J, Miró J, Yeste M. Species-specific differences in sperm chromatin decondensation between eutherian mammals underlie distinct lysis requirements. Front Cell Dev Biol. 2021;9:669182. https://doi.org/10.3389/fcell.2021.669182.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mondal P, Maity R, Mallick C. In vitro spermicidal effect of Thevetia peruviana leaves on human spermatozoa. Andrologia. 2022;54(2):e14323. https://doi.org/10.1111/and.14323.

    Article  CAS  PubMed  Google Scholar 

  43. Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology. 2017;5(2):204–18. https://doi.org/10.1111/andr.12320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guido C, Santoro M, De Amicis F, Perrotta I, Panza S, Rago V, Cesario MG, Lanzino M, Aquila S. Human sperm anatomy and endocrinology in varicocele: role of androgen receptor. Reproduction. 2014;147(5):589–98. https://doi.org/10.1530/REP-13-0542.

    Article  CAS  PubMed  Google Scholar 

  45. Hu GX, Zhao BH, Chu YH, Zhou HY, Akingbemi BT, Zheng ZQ, Ge RS. Effects of genistein and equol on human and rat testicular 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase 3 activities. Asian J Androl. 2010;12(4):519–26. https://doi.org/10.1038/aja.2010.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Salahudeen MS, Nishtala PS. An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice. Saudi Pharm J. 2017;25(2):165–75. https://doi.org/10.1016/j.jsps.2016.07.002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the UGC for providing the funding necessary to complete this work. University Grants Commission (UGC), Govt. of India. NTA Ref No.: 200510431209.

Author information

Authors and Affiliations

Authors

Contributions

Puja Das conducted the project, methodology, and drafted the original manuscript. Data analysis and data curation were performed by Kuladip Jana, and Dipanwita Mitra handled the animals and collected the human semen samples. Debidas Ghosh supervised, conceptualized the study design, and edited and validated the manuscript.

Corresponding author

Correspondence to Debidas Ghosh.

Ethics declarations

Ethics approval

This study was approved by the Institutional Ethics Committee of Vidyasagar University with reference no. VU/IAEC/CPCSEA/6/7/2022 dt.22.11.2022.

Consent to participate

Each participant signed the informed consent.

Consent for publication

All authors agree to publish the article in this journal after acceptance.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Mitra, D., Jana, K. et al. In Vitro Study on Spermicidal Action of Hydro-methanol Extract of Tinospora cordifolia (Willd.) Stem in Rat and Human Sperm: a Comparative Analysis. Reprod. Sci. 30, 3480–3494 (2023). https://doi.org/10.1007/s43032-023-01327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01327-4

Keywords

Navigation